# 1.4 Machine learning lecture 5  (Page 5/15)

So the maximum likelihood estimate for phi would be Sum over I, YI ÷ M, or written alternatively as Sum over – all your training examples of indicator YI = 1 ÷ M, okay? In other words, maximum likelihood estimate for a newly parameter phi is just the faction of training examples with label one, with Y equals 1. Maximum likelihood estimate for mew0 is this, okay? You should stare at this for a second and see if it makes sense.

Actually, I’ll just write on the next one for mew1 while you do that. Okay? So what this is is what the denominator is sum of your training sets indicated YI = 0. So for every training example for which YI = 0, this will increment the count by one, all right?

So the denominator is just the number of examples with label zero, all right? And then the numerator will be, let’s see, Sum from I = 1 for M, or every time YI is equal to 0, this will be a one, and otherwise, this thing will be zero, and so this indicator function means that you’re including only the times for which YI is equal to one – only the turns which Y is equal to zero because for all the times where YI is equal to one, this sum and will be equal to zero, and then you multiply that by XI, and so the numerator is really the sum of XI’s corresponding to examples where the class labels were zero, okay? Raise your hand if this makes sense. Okay, cool.

So just to say this fancifully, this just means look for your training set, find all the examples for which Y = 0, and take the average of the value of X for all your examples which Y = 0. So take all your negative fitting examples and average the values for X and that’s mew0, okay?

If this notation is still a little bit cryptic – if you’re still not sure why this equation translates into what I just said, do go home and stare at it for a while until it just makes sense. This is, sort of, no surprise. It just says to estimate the mean for the negative examples, take all your negative examples, and average them. So no surprise, but this is a useful practice to indicate a notation.

[Inaudible] divide the maximum likelihood estimate for sigma. I won’t do that. You can read that in the notes yourself. And so having fit the parameters find mew0, mew1, and sigma to your data, well, you now need to make a prediction. You know, when you’re given a new value of X, when you’re given a new cancer, you need to predict whether it’s malignant or benign.

Your prediction is then going to be, let’s say, the most likely value of Y given X. I should write semicolon the parameters there. I’ll just give that – which is the [inaudible] of a Y by Bayes rule, all right? And that is, in turn, just that because the denominator PFX doesn’t depend on Y, and if PFY is uniform.

In other words, if each of your constants is equally likely, so if PFY takes the same value for all values of Y, then this is just arc X over Y, PFX given Y, okay?

This happens sometimes, maybe not very often, so usually you end up using this formula where you compute PFX given Y and PFY using your model, okay?

can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
is it 3×y ?
J, combine like terms 7x-4y
im not good at math so would this help me
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!