<< Chapter < Page Chapter >> Page >

The concept of sustainability has engendered broad support from almost all quarters. In a relatively succinct way it expresses the basis upon which human existence and the quality of human life depend: responsible behavior directed toward the wise and efficient use of natural and human resources. Such a broad concept invites a complex set of meanings that can be used to support divergent courses of action. Even within the Brundtland Report a dichotomy exists: alarm over environmental degradation that typically results from economic growth, yet seeing economic growth as the main pathway for alleviating wealth disparities.

The three main elements of the sustainability paradigm are usually thought of as equally important, and within which tradeoffs are possible as courses of action are charted. For example, in some instances it may be deemed necessary to degrade a particular ecosystem in order to facilitate commerce, or food production, or housing. In reality, however, the extent to which tradeoffs can be made before irreversible damage results is not always known, and in any case there are definite limits on how much substitution among the three elements is wise (to date, humans have treated economic development as the dominant one of the three). This has led to the notion of strong sustainability    , where tradeoffs among natural, human, and social capital are not allowed or are very restricted, and weak sustainability    , where tradeoffs are unrestricted or have few limits. Whether or not one follows the strong or weak form of sustainability, it is important to understand that while economic and social systems are human creations, the environment is not. Rather, a functioning environment underpins both society and the economy.

This inevitably leads to the problem of metrics: what should be measured and how should the values obtained be interpreted, in light of the broad goals of the sustainability paradigm? The Chapter Problem-Solving, Metrics, and Tools for Sustainability addresses this in detail, but presented here is a brief summary of the findings of the Millennium Ecosystem Assessment (MEA), a project undertaken by over a thousand internationally recognized experts, from 2001-2005, who assessed the state of the world’s major ecosystems and the consequences for humans as a result of human-induced changes. In its simplest form, a system is a collection of parts that function together. The MEA presents findings as assessments of ecosystems    and ecosystem services    : provisioning services such as food and water; regulating services such as flood control, drought, and disease; supporting services such as soil formation and nutrient cycling; and cultural services such as recreational, spiritual, religious and other nonmaterial benefits. MEA presents three overarching conclusions:

Approximately 60% (15 out of 24) of the ecosystem services examined are being degraded or used unsustainably, including fresh water, capture fisheries, air and water purification, and the regulation of regional and local climate, natural hazards, and pests. The full costs of the loss and degradation of these ecosystem services are difficult to measure, but the available evidence demonstrates that they are substantial and growing. Many ecosystem services have been degraded as a consequence of actions taken to increase the supply of other services, such as food. These trade-offs often shift the costs of degradation from one group of people to another or defer costs to future generations.
There is established but incomplete evidence that changes being made are increasing the likelihood of nonlinear changes in ecosystems (including accelerating, abrupt, and potentially irreversible changes) that have important consequences for human well-being. Examples of such changes include disease emergence, abrupt alterations in water quality, the creation of “dead zones” in coastal waters, the collapse of fisheries, and shifts in regional climate.
The harmful effects of the degradation of ecosystem services are being borne disproportionately by the poor, are contributing to growing inequities and disparities across groups of people, and are sometimes the principal factor causing poverty and social conflict. This is not to say that ecosystem changes such as increased food production have not also helped to lift many people out of poverty or hunger, but these changes have harmed other individuals and communities, and their plight has been largely overlooked. In all regions, and particularly in sub-Saharan Africa, the condition and management of ecosystem services is a dominant factor influencing prospects for reducing poverty.

Organizations such as the World Commission on Environment and Development, the Millennium Ecosystem Assessment, and several others including the Intergovernmental Panel on Climate Change , the Organization for Economic Cooperation and Development, and the National Academy Report to Congress have all issued reports on various aspects of the state of society and the environment. The members of these groups are among the best experts available to assess the complex problems facing human society in the 21 st century, and all have reached a similar conclusion: absent the enactment of new policies and practices that confront the global issues of economic disparities, environmental degradation, and social inequality, the future needs of humanity and the attainment of our aspirations and goals are not assured.

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?