# 1.2 Machine learning lecture 3  (Page 7/14)

Actually, just quickly raise your hand if you’ve seen a Gaussian distribution before. Okay, cool. Most of you. Great. Almost everyone. So, in other words, the density for Gaussian is what you’ve seen before. The density for epsilon I would be one over root 2 pi sigma, E to the negative, epsilon I squared over 2 sigma squared, right? And the density of our epsilon I will be this bell-shaped curve with one standard deviation being a, sort of, sigma. Okay? This is form for that bell-shaped curve. So, let’s see. I can erase that. Can I erase the board? So this implies that the probability distribution of a price of a house given in si and the parameters theta, that this is going to be Gaussian with that density. Okay? In other words, saying goes as that the price of a house given the features of the house and my parameters theta, this is going to be a random variable that’s distributed Gaussian with mean theta transpose XI and variance sigma squared. Right? Because we imagine that the way the housing prices are generated is that the price of a house is equal to theta transpose XI and then plus some random Gaussian noise with variance sigma squared. So the price of a house is going to have mean theta transpose XI, again, and sigma squared, right? Does this make sense? Raise your hand if this makes sense. Yeah, okay. Lots of you.

In point of notation – oh, yes?

Student: Assuming we don’t know anything about the error, why do you assume here the error is a Gaussian?

Instructor (Andrew Ng) :Right. So, boy. Why do I see the error as Gaussian? Two reasons, right? One is that it turns out to be mathematically convenient to do so and the other is, I don’t know, I can also mumble about justifications, such as things to the central limit theorem. It turns out that if you, for the vast majority of problems, if you apply a linear regression model like this and try to measure the distribution of the errors, not all the time, but very often you find that the errors really are Gaussian. That this Gaussian model is a good assumption for the error in regression problems like these. Some of you may have heard of the central limit theorem, which says that the sum of many independent random variables will tend towards a Gaussian. So if the error is caused by many effects, like the mood of the seller, the mood of the buyer, some other features that we miss, whether the place has a garden or not, and if all of these effects are independent, then by the central limit theorem you might be inclined to believe that the sum of all these effects will be approximately Gaussian. If in practice, I guess, the two real answers are that, 1.) In practice this is actually a reasonably accurate assumption, and 2.) Is it turns out to be mathematically convenient to do so. Okay? Yeah?

Student: It seems like we’re saying if we assume that area around model has zero mean, then the area is centered around our model. Which it seems almost like we’re trying to assume what we’re trying to prove. Instructor?

how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
is it 3×y ?
J, combine like terms 7x-4y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!