<< Chapter < Page Chapter >> Page >

So if – well, suppose you want to evaluate your hypothesis H at a certain point with a certain query point low K is X. Okay? And let’s say you want to know what’s the predicted value of Y at this position of X, right? So for linear regression, what we were doing was we would fit theta to minimize sum over I, YI minus theta, transpose XI squared, and return theta transpose X. Okay? So that was linear regression. In contrast, in locally weighted linear regression you’re going to do things slightly different. You’re going to look at this point X and then I’m going to look in my data set and take into account only the data points that are, sort of, in the little vicinity of X. Okay? So we’ll look at where I want to value my hypothesis. I’m going to look only in the vicinity of this point where I want to value my hypothesis, and then I’m going to take, let’s say, just these few points, and I will apply linear regression to fit a straight line just to this sub-set of the data. Okay? I’m using this sub-term sub-set – well let’s come back to that later. So we take this data set and I fit a straight line to it and maybe I get a straight line like that. And what I’ll do is then evaluate this particular value of straight line and that will be the value I return for my algorithm. I think this would be the predicted value for – this would be the value of then my hypothesis outputs in locally weighted regression. Okay?

So we’re gonna fall one up. Let me go ahead and formalize that. In locally weighted regression, we’re going to fit theta to minimize sum over I to minimize that where these terms W superscript I are called weights. There are many possible choice for ways, I’m just gonna write one down. So this E’s and minus, XI minus X squared over two. So let’s look at what these weights really are, right? So notice that – suppose you have a training example XI. So that XI is very close to X. So this is small, right? Then if XI minus X is small, so if XI minus X is close to zero, then this is E’s to the minus zero and E to the zero is one. So if XI is close to X, then WI will be close to one. In other words, the weight associated with the, I training example be close to one if XI and X are close to each other. Conversely if XI minus X is large then – I don’t know, what would WI be?

Student: Zero.

Instructor (Andrew Ng) :Zero, right. Close to zero. Right. So if XI is very far from X then this is E to the minus of some large number and E to the minus some large number will be close to zero. Okay? So the picture is, if I’m quarrying at a certain point X, shown on the X axis, and if my data set, say, look like that, then I’m going to give the points close to this a large weight and give the points far away a small weight. So for the points that are far away, WI will be close to zero. And so as if for the points that are far away, they will not contribute much at all to this summation, right? So I think this is sum over I of one times this quadratic term for points by points plus zero times this quadratic term for faraway points. And so the effect of using this weighting is that locally weighted linear regression fits a set of parameters theta, paying much more attention to fitting the points close by accurately. Whereas ignoring the contribution from faraway points. Okay? Yeah?

Questions & Answers

how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Machine learning. OpenStax CNX. Oct 14, 2013 Download for free at http://cnx.org/content/col11500/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Machine learning' conversation and receive update notifications?