<< Chapter < Page Chapter >> Page >

Instructor (Andrew Ng) :Okay. Good morning. Just one quick announcement before I start. Poster session, next Wednesday, 8:30 as you already know, and poster boards will be made available soon, so the poster boards we have are 20 inches by 30 inches in case you want to start designing your posters. That’s 20 inches by 30 inches. And they will be available this Friday, and you can pick them up from Nicki Salgudo who’s in Gates 187, so starting this Friday. I’ll send out this information by e-mail as well, in case you don’t want to write it down.

For those you that are SCPD students, if you want to show up here only on Wednesday for the poster session itself, we’ll also have blank posters there, or you’re also welcome to buy your own poster boards. If you do take poster boards from us then please treat them well. For the sake of the environment, we do ask you to give them back at the end of the poster session. We’ll recycle them from year to year. So if you do take one from us, please don’t cut holes in it or anything. So welcome to the last lecture of this course. What I want to do today is tell you about one final class of reinforcement learning algorithms. I just want to say a little bit about POMDPs, the partially observable MDPs, and then the main technical topic for today will be policy search algorithms. I’ll talk about two specific algorithms, essentially called reinforced and called Pegasus, and then we’ll wrap up the class. So if you recall from the last lecture, I actually started to talk about one specific example of a POMDP, which was this sort of linear dynamical system. This is sort of LQR, linear quadratic revelation problem, but I changed it and said what if we only have observations YT. And what if we couldn’t observe the state of the system directly, but had to choose an action only based on some noisy observations that maybe some function of the state?

So our strategy last time was that we said that in the fully observable case, we could choose actions – AT equals two, that matrix LT times ST. So LT was this matrix of parameters that [inaudible] describe the dynamic programming algorithm for finite horizon MDPs in the LQR problem. And so we said if only we knew what the state was, we choose actions according to some matrix LT times the state. And then I said in the partially observable case, we would compute these estimates. I wrote them as S of T given T, which were our best estimate for what the state is given all the observations. And in particular, I’m gonna talk about a Kalman filter which we worked out that our posterior distribution of what the state is given all the observations up to a certain time that was this.

So this is from last time. So that given the observations Y one through YT, our posterior distribution of the current state ST was Gaussian would mean ST given T sigma T given T. So I said we use a Kalman filter to compute this thing, this ST given T, which is going to be our best guess for what the state is currently. And then we choose actions using our estimate for what the state is, rather than using the true state because we don’t know the true state anymore in this POMDP. So it turns out that this specific strategy actually allows you to choose optimal actions, allows you to choose actions as well as you possibly can given that this is a POMDP, and given there are these noisy observations. It turns out that in general finding optimal policies with POMDPs – finding optimal policies for these sorts of partially observable MDPs is an NP-hard problem. Just to be concrete about the formalism of the POMDP – I should just write it here – a POMDP formally is a tuple like that where the changes are the set Y is the set of possible observations, and this O subscript S are the observation distributions. And so at each step, we observe – at each step in the POMDP, if we’re in some state ST, we observe some observation YT drawn from the observation distribution O subscript ST, that there’s an index by what the current state is. And it turns out that computing the optimal policy in a POMDP is an NP-hard problem. For the specific case of linear dynamical systems with the Kalman filter model, we have this strategy of computing the optimal policy assuming full observability and then estimating the states from the observations, and then plugging the two together.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Machine learning. OpenStax CNX. Oct 14, 2013 Download for free at http://cnx.org/content/col11500/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Machine learning' conversation and receive update notifications?

Ask