<< Chapter < Page
  Physics for k-12   Page 1 / 1
Chapter >> Page >
Position vector encapsulates directional feature of a position in the volumetric space of the coordinate system.

Position vector is a convenient mathematical construct to encapsulate the twin ideas of magnitude (how far?) and direction (in which direction?) of the position, occupied by an object.

Position vector
Position vector is a vector that extends from the reference point to the position of the particle.

Position vector

Position vector is represented by a vector, joining origin to the position of point object

Generally, we take origin of the coordinate system as the reference point.

It is easy to realize that vector representation of position is appropriate, where directional properties of the motion are investigated. As a matter of fact, three important directional attributes of motion, namely displacement, velocity and acceleration are defined in terms of position vectors.

Consider the definitions : the “displacement” is equal to the change in position vector; the “velocity” is equal to the rate of change of position vector with respect to time; and “acceleration” is equal to the rate of change of velocity with respect to time, which, in turn, is the rate of change of position vector. Thus, all directional attributes of motion is based on the processing of position vectors.

Position vector in component form

One of the important characteristics of position vector is that it is rooted to the origin of the coordinate system. We shall find that most other vectors associated with physical quantities, having directional properties, are floating vectors and not rooted to a point of the coordinate system like position vector.

Recall that scalar components are graphically obtained by dropping two perpendiculars from the ends of the vector to the axes. In the case of position vector, one of the end is the origin itself. As position vector is rooted to the origin, the scalar components of position vectors in three mutually perpendicular directions of the coordinate system are equal to the coordinates themselves. The scalar components of position vector, r , by definition in the designated directions of the rectangular axes are :

x = r cos α y = r cos β z = r cos γ

Scalar components of a vector

Scalar components are equal to coordiantes of the position

and position vector in terms of components (coordinates) is :

r = x i + y j + z k

where i , j and k are unit vectors in x, y and z directions.

The magnitude of position vector is given by :

r = | r | = ( x 2 + y 2 + z 2 )

Position and distance

Problem : Position (in meters) of a moving particle as a function of time (in seconds) is given by :

r = ( 3 t 2 - 3 ) i + ( 4 - 7 t ) j + ( - t 3 ) k

Find the coordinates of the positions of the particle at the start of the motion and at time t = 2 s. Also, determine the linear distances of the positions of the particle from the origin of the coordinate system at these time instants.

Solution : The coordinates of the position are projection of position vector on three mutually perpendicular axes. Whereas linear distance of the position of the particle from the origin of the coordinate system is equal to the magnitude of the position vector. Now,

When t = 0 (start of the motion)

r = ( 3 x 0 - 3 ) i + ( 4 - 7 x 0 ) j + ( - 0 ) k

The coordinates are :

x = - 3 m and y = 4 m

and the linear distance from the origin is :

r = | r | = ( ( - 3 ) 2 + 4 2 ) ) = 25 = 5 m

When t = 2 s

r = ( 3 x 2 2 - 3 ) i + ( 4 - 7 x 2 ) j + ( - 2 3 ) k = 9 i - 10 j - 8 k

The coordinates are :

x = 9 m, y = - 10 m and z = - 8 m.

and the linear distance from the origin is :

r = | r | = ( 9 2 + ( - 10 ) 2 + ( - 8 ) 2 ) ) = 245 = 15.65 m

Got questions? Get instant answers now!

Motion types and position vector

Position is a three dimensional concept, requiring three coordinate values to specify it. Motion of a particle, however, can take place in one (linear) and two (planar) dimensions as well.

In two dimensional motion, two of the three coordinates change with time. The remaining third coordinate is constant. By appropriately choosing the coordinate system, we can eliminate the need of specifying the third coordinate.

In one dimensional motion, only one of the three coordinates is changing with time. Other two coordinates are constant through out the motion. As such, it would be suffice to describe positions of the particle with the values of changing coordinate and neglecting the remaining coordinates.

A motion along x –axis or parallel to x – axis is, thus, described by x - component of the position vector i.e. x – coordinate of the position as shown in the figure. It is only the x-coordinate that changes with time; other two coordinates remain same.

Motion in one dimesnion

The description of one dimensional motion is further simplified by shifting axis to the path of motion as shown below. In this case, other coordinates are individually equal to zero.

x = x; y = 0; z = 0

Motion in one dimesnion

In this case, position vector itself is along x – axis and, therefore, its magnitude is equal to x – coordinate.

Examples

Problem : A particle is executing motion along a circle of radius “a” with a constant angular speed “ω” as shown in the figure. If the particle is at “O” at t = 0, then determine the position vector of the particle at an instant in xy - plane with "O" as the origin of the coordinate system.

A particle in circular motion

The particle moves with a constant angular velocity.

Solution : Let the particle be at position “P” at a given time “t”. Then the position vector of the particle is :

A particle in circular motion

The particle moves with a constant angular velocity starting from “O” at t = 0.

r = x i + y j

Note that "x" and "y" components of position vector is measured from the origin "O". From the figure,

y = a sin θ = a sin ω t

It is important to check that as particle moves in clockwise direction, y-coordinate increase in first quarter starting from origin, decreases in second quarter and so on. Similarly, x-coordinate is given by the expression :

x = a - a cos ω t = a ( 1 - cos ω t )

Thus, position vector of the particle in circular motion is :

r = a ( 1 - cos ω t ) i + a sin ω t j

Got questions? Get instant answers now!

Questions & Answers

A stone propelled from a catapult with a speed of 50ms-1 attains a height of 100m. Calculate the time of flight, calculate the angle of projection, calculate the range attained
Samson Reply
water boil at 100 and why
isaac Reply
what is upper limit of speed
Riya Reply
what temperature is 0 k
Riya
0k is the lower limit of the themordynamic scale which is equalt to -273 In celcius scale
Mustapha
How MKS system is the subset of SI system?
Clash Reply
which colour has the shortest wavelength in the white light spectrum
Mustapha Reply
how do we add
Jennifer Reply
if x=a-b, a=5.8cm b=3.22 cm find percentage error in x
Abhyanshu Reply
x=5.8-3.22 x=2.58
sajjad
what is the definition of resolution of forces
Atinuke Reply
what is energy?
James Reply
Ability of doing work is called energy energy neither be create nor destryoed but change in one form to an other form
Abdul
motion
Mustapha
highlights of atomic physics
Benjamin
can anyone tell who founded equations of motion !?
Ztechy Reply
n=a+b/T² find the linear express
Donsmart Reply
أوك
عباس
Quiklyyy
Sultan Reply
Moment of inertia of a bar in terms of perpendicular axis theorem
Sultan Reply
How should i know when to add/subtract the velocities and when to use the Pythagoras theorem?
Yara Reply
Centre of mass of two uniform rods of same length but made of different materials and kept at L-shape meeting point is origin of coordinate
Rama Reply

Get the best Physics for k-12 course in your pocket!





Source:  OpenStax, Physics for k-12. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10322/1.175
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Physics for k-12' conversation and receive update notifications?

Ask