<< Chapter < Page Chapter >> Page >


Synthesis of solid state materials

There exist many synthetic methods to make crystalline solids. Traditional solid state chemical reactions are often slow and require high temperatures and long periods of time for reactants to form the desire compound. They also require that reactants are mixed in the solid state by grinding two solids together. In this manner the mixture formed is heterogeneous (i.e. not in the same phase), and high temperatures are required to increase the mobility of the ions that are being formed into the new solid binary phase. Another approach to get solid state binary structures is using a precursor material such as a metal carbonate, that upon decomposition at high temperatures loses gaseous CO 2 size 12{ ital "CO" rSub { size 8{2} } } {} resulting in very fine particles of the corresponding metal oxide (e.g., BaCO 3 ( s ) BaO ( s ) + CO 2 ( g ) size 12{ ital "BaCO" rSub { size 8{3 \( s \) } } rightarrow ital "BaO" rSub { size 8{ \( s \) } } + ital "CO" rSub { size 8{2 \( g \) } } } {} ).

X-ray crystallography


To determine the atomic or molecular structure of a crystal diffraction of X-rays is used. It was observed that visible light can be diffracted by the use of optical grids, because these are arranged in a regular manner. Energy sources such as X-rays have such small wavelengths that only“grids”the size of atoms will be able to diffract X-rays. As mentioned before a crystal has regular molecular array, and therefore it is possible, to use X-ray diffraction to determine the location of the atoms in crystal lattice. When such an experiment is carried out we say that we have determined the crystal structure of the substance. The study of crystal structures is known as crystallography and it is one of the most powerful techniques used today to characterize new compounds. You will discuss the principles behind X-ray diffraction in the lecture part of this course.




A superconductor is an element, or compound that will conduct electricity without resistance when it is below a certain temperature. Without resistance the electrical current will flow continuously in a closed loop as long as the material is kept below an specific temperature. Since the electrical resistance is zero, supercurrents are generated in the material to exclude the magnetic fields from a magnet brought near it. The currents which cancel the external field produce magnetic poles opposite to the poles of the permanent magnet, repelling them to provide the lift to levitate the magnet . In some countries (including USA) this magnet levitation has been used for transporation. Specifically trains can take advantage of this levitation to virtually eliminate friction between the vehicle and the tracks. A train levitated over a superconductor can attain speeds over 300 mph!

Solid state model kits

In this experiment we will use the Institute for Chemical Education (ICE) Solid-State Model Kits which are designed for creating a variety of common and important solid state structures. Please be careful with these materials as they are quite expensive. There is a list of kit components on the inside of the lid of each box. Please make sure that you have all the listed pieces and that these are in their proper locations when you finish using the kit.

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Honors chemistry lab fall. OpenStax CNX. Nov 15, 2007 Download for free at http://cnx.org/content/col10456/1.16
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Honors chemistry lab fall' conversation and receive update notifications?