# 0.7 Laminar flows with dependence on one dimension  (Page 3/6)

 Page 3 / 6
$\begin{array}{c}-\nabla p+\rho \phantom{\rule{0.166667em}{0ex}}\mathbf{f}=-\nabla P\hfill \\ \mathrm{where}\hfill \\ P=p+\rho \phantom{\rule{0.166667em}{0ex}}g\phantom{\rule{0.166667em}{0ex}}h\hfill \end{array}$

The product $gh$ is the gravitational potential, where $g$ is the acceleration of gravity and $h$ is distance upward relative to some datum. The pressure, $p$ , is also relative to a datum, which may be the datum for $h$ .

The primary spatial dependence is in the direction normal to the plane of the plates. If there is no dependence on one spatial direction, then the flow is truly one-dimensional. However, if the velocity and pressure gradients have components in two directions in the plane of the plates, the flow is not strictly 1-D and nonlinear, inertial terms will be present in the equations of motion. The significance of these terms is quantified by the Reynolds number. If the flow is steady, and the Reynolds number negligible, the equations of motion are as follows.

$\begin{array}{c}0=-\frac{\partial P}{\partial {x}_{j}}-\frac{\partial {\tau }_{j3}}{\partial {x}_{3}},\phantom{\rule{1.em}{0ex}}\phantom{\rule{1.em}{0ex}}j=1,\phantom{\rule{0.166667em}{0ex}}2\hfill \\ 0=-\frac{\partial P}{\partial {x}_{3}}-0\hfill \\ 0=-\frac{\partial P}{\partial {x}_{j}}+\mu \frac{{\partial }^{2}{v}_{j}}{\partial {x}_{3}^{2}},\phantom{\rule{1.em}{0ex}}j=1,\phantom{\rule{0.166667em}{0ex}}2,\phantom{\rule{1.em}{0ex}}\mathrm{Newtonian}\phantom{\rule{0.277778em}{0ex}}\mathrm{fluid}\hfill \end{array}$

Let $h$ be the spacing between the plates and the velocity is zero at each surface.

${v}_{j}=0,\phantom{\rule{1.em}{0ex}}{x}_{3}=0,\phantom{\rule{0.277778em}{0ex}}h\phantom{\rule{1.em}{0ex}}j=1,\phantom{\rule{0.166667em}{0ex}}2$

The velocity profile for a Newtonian fluid in plane-Poiseuille flow is

${v}_{j}=\frac{{h}^{2}}{2\mu }\frac{\partial P}{\partial {x}_{j}}\left[{\left(\frac{{x}_{3}}{h}\right)}^{2}-\frac{{x}_{3}}{h}\right],\phantom{\rule{1.em}{0ex}}j=1,\phantom{\rule{0.166667em}{0ex}}2,\phantom{\rule{1.em}{0ex}}0\le {x}_{3}\le h$

The average velocity over the thickness of the plate can be determined by integrating the profile.

${\overline{v}}_{j}=-\frac{{h}^{2}}{12\mu }\phantom{\rule{0.166667em}{0ex}}\frac{\partial P}{\partial {x}_{j}},\phantom{\rule{1.em}{0ex}}j=1,\phantom{\rule{0.166667em}{0ex}}2$

This equation for the average velocity can be written as a vector equation if it is recognized that the vectors have components only in the $\left(1,2\right)$ directions.

$\overline{\mathbf{v}}=-\frac{{h}^{2}}{12\mu }\phantom{\rule{0.166667em}{0ex}}\nabla P,\phantom{\rule{1.em}{0ex}}\overline{\mathbf{v}}=\overline{\mathbf{v}}\left({x}_{1},\phantom{\rule{0.166667em}{0ex}}{x}_{2}\right),\phantom{\rule{0.277778em}{0ex}}\phantom{\rule{1.em}{0ex}}\nabla P=\nabla P\left({x}_{1},\phantom{\rule{0.166667em}{0ex}}{x}_{2}\right)$

If the flow is incompressible, the divergence of velocity is zero and the potential, $P$ , is a solution of the Laplace equation except where sources are present. If the strength of the sources or the flux at boundaries are known, the potential, $P$ , can be determined from the methods for the solution of the Laplace equation.

We now have the result that the average velocity vector is proportional to a potential gradient. Thus the average velocity field in a Hele-Shaw flow is irrotational. If the fluid is incompressible, the average velocity field is also solenoidal can can be expressed as the curl of a vector potential or the stream function. The average velocity field of Hele-Shaw flow is an physical analog for the irrotational, solenoidal, 2-D flow described by the complex potential. It is also a physical analog for 2-D flow of incompressible fluids through porous media by Darcy's law and was used for that purpose before numerical reservoir simulators were developed.

## Poiseuille flow

Poiseuille law describes laminar flow of a Newtonian fluid in a round tube (case 1). We will derive Poiseuille law for a Newtonian fluid and leave the flow of a power-law fluid as an assignment. The equation of motion for the steady, developed (from end effects) flow of a fluid in a round tube of uniform radius is as follows.

$\begin{array}{c}0=-\frac{\partial P}{\partial r}\hfill \\ 0=-\frac{\partial P}{\partial z}-\frac{1}{r}\frac{\partial }{\partial r}\left(r{\tau }_{rz}\right),\phantom{\rule{1.em}{0ex}}0

The boundary conditions are symmetry at $r=0$ and no slip at $r=R$ .

$\begin{array}{c}{\left({\tau }_{rz}|}_{r=0}=-\mu {\left(\frac{\partial {v}_{z}}{\partial r}|}_{r=0}=0\hfill \\ {v}_{z}=0,\phantom{\rule{1.em}{0ex}}r=R\hfill \end{array}$

From the radial component of the equations of motion, $P$ does not depend on radial position. Since the flow is steady and fully developed, the gradient of $P$ is a constant. The $z$ component of the equations of motion can be integrated once to derive the stress profile and wall shear stress .

find the 15th term of the geometric sequince whose first is 18 and last term of 387
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
hmm well what is the answer
Abhi
how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!