The flows when the fluid between two parallel surfaces are induced to flow by the motion of one surface relative to the other is called
Couette flow . This is the generic shear flow that is used to illustrate Newton's law of viscosity. Pressure and body forces balance each other and at steady state the equation of motion simplify to the divergence of the viscous stress tensor or the Laplacian of velocity in the case of a Newtonian fluid.
Cylindrical Couette flow. The above example was the translational movement of two planes relative to each other. Couette flow is also possible in the annular gap between two concentric cylindrical surfaces (cases 8 and 9) if secondary flows do not occur due to centrifugal forces. We use cylindrical polar coordinates rather than Cartesian and
assume vanishing Reynolds number. The only independent variable is the radius.
The boundary conditions on velocity depend on whether the cylindrical surfaces move relative to each other as a result of rotation, axial translation, or both.
Planer rotational Couette flow. The parallel plate viscometer has the configuration shown in case 10. The system is not strictly 1-D because the velocity of one of the surfaces is a function of radius. Also, there is a centrifugal force present near the rotating surface but is absent at the stationary surface. However, if the Reynolds number is small enough that secondary flows do not occur, then the velocity at a given value of the radius may be approximated as a function of only the
$z$ distance in the gap. The differential equations at zero Reynolds number are as follows.
The stress is a function of the radius and if the fluid is non-Newtonian, the viscosity may be changing with radial position.
Plane-poiseuille and hele-shaw flow
Forced flow between two stationary, parallel plates, case 2, is called plane-Poiseuille flow or if the flow depends on two spatial variables in the plane, it is called Hele-Shaw flow. The flow is forced by a specified flow rate or a specified pressure or gravity potential gradient. The pressure and gravitational potential can be combined into a single variable,
$P$ .
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?