# 0.6 Solution of the partial differential equations  (Page 10/13)

 Page 10 / 13
${v}_{\xi }-i{v}_{\eta }=\frac{dw}{d\varsigma }=\frac{dw}{dz}\frac{dz}{d\varsigma }=\left({v}_{x}-i{v}_{y}\right)\frac{dz}{d\varsigma }$

This shows that the magnitude of the velocity is changed, in the transformation from the $z$ -plane to the $\zeta$ -plane, by the reciprocal of the factor by which linear dimensions of small figures are changed. Thus the kinetic energy of the fluid contained within a closed curve in the $z$ -plane is equal to the kinetic energy of the corresponding flow in the region enclosed by the corresponding in the $\zeta$ -plane.

Flow around elliptic cylinder (Batchelor, 1967). The transformation of the region outside of an ellipse in the $z$ -plane into the region outside a circle in the $\zeta$ -plane is given by

$\begin{array}{c}z=\varsigma +\frac{{\lambda }^{2}}{\varsigma }\hfill \\ \varsigma =\frac{1}{2}z+\frac{1}{2}{\left({z}^{2}-4{\lambda }^{2}\right)}^{1/2}\hfill \end{array}$

where $\lambda$ is a real constant so that

$x=\xi \left(1+\frac{{\lambda }^{2}}{{\left|\varsigma \right|}^{2}}\right),\phantom{\rule{1.em}{0ex}}y=\eta \left(1-\frac{{\lambda }^{2}}{{\left|\varsigma \right|}^{2}}\right)$

This converts a circle of radius c with center at the origin in the - plane into the ellipse

$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$

in the $z$ -plane, where

$\lambda =\frac{1}{2}{\left({a}^{2}-{b}^{2}\right)}^{1/2}$

If the ellipse is mapped into a circle in the $\zeta$ -plane, it is convenient to use polar coordinates $\left(r,\theta \right)$ , especially since the boundary corresponds to a constant radius. The radius that maps to the elliptical boundary is ( ellipse.m in the complex directory)

${r}_{o}=\frac{1}{2}log\left(\frac{a+b}{a-b}\right)$

The transformation from the polar coordinates to the z - plane is defined by

$\begin{array}{c}z=2\lambda \phantom{\rule{0.166667em}{0ex}}cosh\phantom{\rule{0.166667em}{0ex}}\omega \hfill \\ \mathrm{where}\hfill \\ \omega =r+i\phantom{\rule{0.166667em}{0ex}}\theta \hfill \end{array}$

The polar coordinates $\left(r,\theta \right)$ , transform to an orthogonal set of curves which are confocal ellipses and conjugate hyperbolae.

This transformation can be substituted into the complex potential expression for the flow of a fluid past a circular cylinder.

$w=-\frac{1}{2}\left(a+b\right)\left[\left(U-iV\right){e}^{\omega -{r}_{o}}+\left(U+iV\right){e}^{{r}_{o}-\omega }\right]$

It is convenient to write - for the angle which the direction of motion of the flow at infinity makes with the x - axis so that

$U+iV={\left({U}^{2}+{V}^{2}\right)}^{1/2}{e}^{-i\alpha }$

The complex potential now becomes

$w=-{\left({U}^{2}+{V}^{2}\right)}^{1/2}\left(a+b\right)cosh\left(\omega -{r}_{o}+i\alpha \right)$

The corresponding velocity potential and stream function are

$\begin{array}{c}\varphi =-{\left({U}^{2}+{V}^{2}\right)}^{1/2}\left(a+b\right)\phantom{\rule{0.166667em}{0ex}}cosh\left(r-{r}_{o}\right)cos\left(\theta +\alpha \right)\hfill \\ \psi =-{\left({U}^{2}+{V}^{2}\right)}^{1/2}\left(a+b\right)sinh\left(r-{r}_{o}\right)sin\left(\theta +\alpha \right)\hfill \end{array}$

The velocity potentials and streamlines are illustrated below for flow past an elliptical cylinder ( fellipse.m in the complex directory). Note the stagnation streamlines on either side of the body. These two stagnation points are regions of maximum pressure and result in a torque on the body. Which way will it rotate?

Pressure distribution. When an object is in a flow field, one may wish to determine the force exerted by the fluid on the object, or the 'drag' on the object. Since the flow field discussed here has assumed an inviscid fluid, it is not possible to determine the viscous drag or skin friction directly from the flow field. It is possible to determine the 'form drag' from the normal stress or pressure distribution around the object. However, one must be critical to determine if the calculated flow field is physically realistic or if some important phenomena such as boundary layer separation may occur but is not allowed in the complex potential solution.

The Bernoulli theorems give the relation between the magnitude of velocity and pressure. We have assumed irrotational, incompressible flow. If in addition we assume the body force can be neglected, then the quantity, $H$ , must be constant along a streamline.

what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!