<< Chapter < Page Chapter >> Page >
Се воведува множеството од рационални броеви.

Множество рационални броеви

Операцијата делење со цел број различен од нула не секогаш може да се изврши во множеството цели броеви, односно количникот на два цели броја не мора да е цел број. Затоа се укажува потребата од проширување на множеството цели броеви во множество рационални броеви кое во себе го содржи множеството цели броеви како вистинско подмножество. Имено, секој цел број може да се запише како дропка со именител 1. На пр. 3 = 3 1 , 3 = 6 2 size 12{3= { {3} over {1} } ,``3= { {6} over {2} } } {} и т.н. Рационалните броеви може да се претстават како количник на два цели броја, при што бројот во именителот треба да се различен од нула.

М ножеството раци ­ о ­ нал ­ ни ­ броеви се запишува со

Q = p q p , q Z , q 0 . size 12{Q= left lbrace { {p} over {q} } \lline p,``q in Z,``q<>0 right rbrace "." } {}

Ова множество е секаде густо множество, бидејќи меѓу два произволни рационални броеви има бесконечно многу рационални броеви. За да го покажеме ова тврдење, ќе докажеме дека меѓу рационалните броеви a size 12{a} {} и b size 12{b} {} се наоѓа бројот a + b 2 . size 12{ { {a+b} over {2} } "." } {} Нека a < b size 12{a<b} {} и ако на двете страни од ова неравенство се додаде бројот a size 12{a} {} се добива

2a < a + b a < a + b 2 . alignl { stack { size 12{2a<a+b} {} # size 12{a<{ {a+b} over {2} } "." } {} } } {}

Аналогно, ако на двете страни од неравенставото a < b size 12{a<b} {} со додаде бројот b size 12{b} {} се добива

a + b < 2b a + b 2 < b . alignl { stack { size 12{a+b<2b} {} # size 12{ { {a+b} over {2} }<b "." } {} } } {}

Од овие две неравенства следува дека

a < a + b 2 < b size 12{a<{ {a+b} over {2} }<b} {}

што означува дека меѓу два рационални броеви a size 12{a} {} и b size 12{b} {} се наоѓа и рационалниот број a + b 2 . size 12{ { {a+b} over {2} } "." } {} Со истата постапка, ако на неравенството a < b size 12{a<b} {} се додава бројот 2a size 12{2a} {} и 2b size 12{2b} {} или na , ( n N ) size 12{ ital "na", \( n in N \) } {} и nb , ( n N ) size 12{ ital "nb", \( n in N \) } {} се добива низа броеви меѓу броевите меѓу a size 12{a} {} и b size 12{b} {} .

Множеството Q size 12{Q} {} исто како и множеството на природни броеви има моќ на преброиво мно­жес­тво бидејќи рационалните броеви може да се подредат во низа во која најпрво се запишуваат рационалните броеви чии што збир на цифри од именителот и броителот изнесува 1 size 12{1`} {} , потоа оние со збир 2 size 12{2`} {} , па 3 size 12{3} {} и т.н. при што се добива низата претставена со следнава шема:

0 1 size 12{ { {0} over {1} } } {} ,

0 2 , 1 1 size 12{ { {0} over {2} } ,` { {1} over {1} } } {} ,

0 3 , 1 2 , 2 1 size 12{ { {0} over {3} } ,` { {1} over {2} } ,` { {2} over {1} } } {} ,

0 4 , 1 3 , 2 2 , 3 1 size 12{ { {0} over {4} } ,` { {1} over {3} } ,` { {2} over {2} } ,` { {3} over {1} } } {} ,

0 5 , 1 4 , 2 3 , 3 2 , 4 1 size 12{ { {0} over {5} } ,` { {1} over {4} } ,` { {2} over {3} } ,` { {3} over {2} } , { {4} over {1} } } {} ,

size 12{ dotslow } {} .

Како што се гледа од горенаведената шема, во наведената низа се запишани само позитивните рационални броеви, што нималку не ја намалува општоста, бидејќи до секој позитивен рационален број може да се додаде и рационалиот број со негативен предзнак. Се забележува дека секој рационален број во оваа низа се повторува бесконечен број пати, но тоа не е битно, важно е дека рационалните броеви на овој начин се подредени во низа, а со тоа нивното множество има моќ на преброиво. За досега наведените множества од броеви важи

N Z Q size 12{N subset Z subset Q} {} ,

што јасно го покажува начинот на кој се врши проширувањето на множествата броеви.

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Воведни поими од математичка анализа. OpenStax CNX. Nov 01, 2007 Download for free at http://legacy.cnx.org/content/col10475/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Воведни поими од математичка анализа' conversation and receive update notifications?

Ask