<< Chapter < Page Chapter >> Page >

Thân p-Kênh n-n+SGDSiO2- VDD ++ VGG -n+Thân p-Kênh n-n+ thoátVùng hiếm do cổng âm đẩy các điện tử và thoát dương hút các điện tử về nóTiếp xúc kim loại cực cổngVùng hiếm giữa phân cực nghịch p- và vùng thoát n+Hình 25Điều hành theo kiểu hiếm

Thân p-n-n+SGDSiO2- VDD +- VGG +n+Điện tử tập trung dưới sức hút nguồn dương của cực cổng làm cho điện trở thông lộ giảmĐiều hành theo kiểu tăngHình 26

Khi VGS = 0V (cực cổng nối thẳng với cực nguồn), điện tử di chuyển giữa cực âm của nguồn điện VDD qua kênh n- đến vùng thoát (cực dương của nguồn điện VDD) tạo ra dòng điện thoát ID. Khi điện thế VDS càng lớn thì điện tích âm ở cổng G càng nhiều (do cổng G cùng điên thế với nguồn S) càng đẩy các điện tử trong kênh n- ra xa làm cho vùng hiếm rộng thêm. Khi vùng hiếm vừa chắn ngang kênh thì kênh bị nghẽn và dòng điện thoát ID đạt đến trị số bảo hoà IDSS.

Khi VGS càng âm, sự nghẽn xảy ra càng sớm và dòng điện bảo hoà ID càng nhỏ.

Khi VGS dương (điều hành theo kiểu tăng), điện tích dương của cực cổng hút các điện tử về mặt tiếp xúc càng nhiều, vùng hiếm hẹp lại tức thông lộ rộng ra, điện trở thông lộ giảm nhỏ. Điều này làm cho dòng thoát ID lớn hơn trong trường hợp VGS = 0V.

00VGS(off)<0 VGSVGS = +1VVGS = 0VVGS = -1VVGS = -2VVGS = -3VVDS (volt)ID (mA)IDSSĐiều hành kiểu tăngĐiều hành kiểu hiếm2VHình 27DE-MOSFET kênh NVGS = +2VIDmaxĐặc tuyến truyềnĐặc tuyến ngõ raID (mA)Vì cực cổng cách điện hẳn khỏi cực nguồn nên tổng trở vào của DE-MOSFET lớn hơn JFET nhiều. Cũng vì thế, khi điều hành theo kiểu tăng, nguồn VGS có thể lớn hơn 0,2V. Thế nhưng ta phải có giới hạn của dòng ID gọi là IDMAX. Đặc tuyến truyền và đặc tuyến ngõ ra như sau:

00VGS(off)>0 VGSVGS = -1VVGS = 0VVGS = +1VVGS = +2VVGS = +3VVDS (volt)ID (mA)IDSSĐiều hành kiểu tăngĐiều hành kiểu hiếm-2VHình 28DE-MOSFET kênh PVGS = -2VIDmaxĐặc tuyến truyềnĐặc tuyến ngõ raID (mA)

Như vậy, khi hoạt động, DE-MOSFET giống hệt JFET chỉ có tổng trở vào lớn hơn và dòng rỉ IGSS nhỏ hơn nhiều so với JFET.

Mosfet loại tăng (enhancement mosfet: e-mosfet)

MOSFET loại tăng cũng có hai loại: E-MOSFET kênh N và E-MOSFET kênh P.

Về mặt cấu tạo cũng giống như DE-MOSFET, chỉ khác là bìng thường không có thông lộ nối liền giữa hai vùng thoát D và vùng nguồn S.

Thân p-n+n+NguồnSCổngGThoátDTiếp xúc kim loạiSiO2GDSThân UGDSThân nối với nguồnKý hiệuE-MOSFET kênh NHình 29Thân UMô hình cấu tạo và ký hiệu được diễn tả bằng hình vẽ sau đây:

Thân n-p+p+NguồnSCổngGThoátDTiếp xúc kim loạiSiO2GDSThân UGDSThân nối với nguồnKý hiệuE-MOSFET kênh PHình 30Thân U

Khi VGS<0V, (ở E-MOSFET kênh N), do không có thông lộ nối liền giữa hai vùng thoát nguồn nên mặc dù có nguồn điện thế VDD áp vào hai cực thoát và nguồn, điện tử cũng không thể di chuyển nên không có dòng thoát ID (ID # 0V). Lúc này, chỉ có một dòng điện rỉ rất nhỏ chạy qua.

Thân p-n+SGDSiO2- VDD +VGS = 0Vn+Mạch tương đươngHình 31

Khi VGS>0, một điện trường được tạo ra ở vùng cổng. Do cổng mang điện tích dương nên hút các điện tử trong nền p- (là hạt tải điện thiểu số) đến tập trung ở mặt đối diện của vùng cổng. Khi VGS đủ lớn, lực hút mạnh, các điện tử đến tập trung nhiều và tạo thành một thông lộ tạm thời nối liền hai vùng nguồn S và thoát D. Điện thế VGS mà từ đó dòng điện thoát ID bắt đầu tăng được gọi là điện thế thềm cổng - nguồn (gate-to-source threshold voltage) VGS(th). Khi VGS tăng lớn hơn VGS(th), dòng điện thoát ID tiếp tục tăng nhanh.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mạch điện tử. OpenStax CNX. Aug 07, 2009 Download for free at http://cnx.org/content/col10892/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mạch điện tử' conversation and receive update notifications?

Ask