<< Chapter < Page Chapter >> Page >

But why do the two algorithms converge to different places? The facile answer is that they are different becausethey minimize different performance functions. Indeed, the error surfaces in [link] show minima in different locations. The convergent value of a 0 . 38 for J N ( a ) is explicable because 0 . 38 2 0 . 15 = s 2 . The convergent value of a = 0 . 22 for J L S ( a ) is calculated in closed form in Exercise  [link] , and this value does a good job minimizing its cost,but it has not solved the problem of making a 2 close to s 2 . Rather, J L S ( a ) calculates a smaller gain that makes avg { s 2 } s 2 . The minima are different. The moral is this:Be wary of your performance functions—they may do what you ask.

The error surface for the AGC objective functions Equation 30 and Equation 34 each have two minima. As long as a can be initialized with the correct (positive) sign, there is little danger of converging to the wrong minimum.
The error surface for the AGC objective functions [link] and [link] each have two minima. As long as a can be initialized with the correct (positive) sign, there is little danger of converging to the wrongminimum.

Use agcgrad.m to investigate the AGC algorithm.

  1. What range of stepsize mu works? Can the stepsize be too small?Can the stepsize be too large?
  2. How does the stepsize mu effect the convergence rate?
  3. How does the variance of the input effect the convergent value of a ?
  4. What range of averages lenavg works? Can lenavg be too small? Can lenavg be too large?
  5. How does lenavg effect the convergence rate?

Show that the value of a that achieves the minimum of J L S ( a ) can be expressed as

± s 2 k r k 2 k r k 4 .

Is there a way to use this (closed form) solution to replace the iteration [link] ?

Consider the alternative objective function J ( a ) = 1 2 a 2 ( 1 2 s 2 [ k ] 3 - s 2 ) . Calculate the derivative and implement avariation of the AGC algorithm that minimizes this objective. How does this version compare to the algorithms [link] and [link] ? Draw the error surface for this algorithm. Which version is preferable?

Try initializing the estimate a(1)=-2 in agcgrad.m . Which minimum does the algorithm find? What happens tothe data record?

Create your own objective function J ( a ) for the AGC problem. Calculate the derivative and implement avariation of the AGC algorithm that minimizes this objective. How does this version compare to the algorithms [link] and [link] ? Draw the error surface for your algorithm. Which version do you prefer?

Investigate how the error surface depends on the input signal. Replace randn with rand in agcerrorsurf.m and draw the error surfaces for both J N ( a ) and J L S ( a ) .

Using an agc to combat fading

One of the impairments encountered in transmission systems is the degradation due to fading, when the strengthof the received signal changes in response to changes in the transmission path. (Recall the discussion in [link] .) This section shows how an AGC can be used to counteractthe fading, assuming the rate of the fading is slow, and provided the signal does not disappear completely.

Suppose that the input consists of a random sequence undulating slowly up and down in magnitude, as in the topplot of [link] . The adaptive AGC compensates for the amplitude variations,growing small when the power of the input is large, and large when the power of the input is small. This is shown in themiddle graph. The resulting output is of roughly constant amplitude, as shown in the bottom plot of [link] .

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Software receiver design. OpenStax CNX. Aug 13, 2013 Download for free at http://cnx.org/content/col11510/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Software receiver design' conversation and receive update notifications?