<< Chapter < Page Chapter >> Page >

The function f is the function that satisfies the following two clauses:

Basis Clause: f(0) = 0! = 1

Inductive Clause: For all natural number n,  f(n+1) = (n+1) f(n).

Note that here Extremal Clause is not necessary, because the set of natural numbers can be defined recursively and that has the extremal clause in it. So there is no chance of other elements to come into the function being defined.

Using this definition, 3! can be found as follows:

Since 0 ! = 1,   1 ! = 1 * 0 ! = 1 * 1 = 1 ,

Hence 2 ! = 2 * 1 ! = 2 * 1 = 2 .

Hence 3 ! = 3 * 2 ! = 3 * 2 * 1 = 6 .

Example 6: The function f(n) = 2n + 1 for natural numbers n can be defined recursively as follows:

The function f is the function that satisfies the following two clauses:

Basis Clause: f(0) = 1

Inductive Clause: For all natural number n,  f(n+1) = f(n) + 2 .

See above for the extremal clause.

Example 7: The function f(n) = 2n for natural numbers n can be defined recursively as follows:

The function f is the function that satisfies the following two clauses:

Basis Clause: f(0) = 1

Inductive Clause: For all natural number n,  f(n+1) = 2 f(n) .

See Example 5 for the extremal clause.

Example 8: The function L from the set S of strings over {a, b} to the set of natural numbers that gives the length of a string can be defined recursively as follows:

The function L is the function that satisfies the following two clauses:

Basis Clause: For symbols a and b of the alphabet,   L(a) = 1 and L(b) = 1.

Inductive Clause: For any string x and y of S,  L(xy) = L(x) + L(y) ,  where xy is the concatenation of strings x and y.

See Example 5 for the extremal clause.

This function L gives the number of a's and b's.

Recursive algorithm

A recursive algorithm is an algorithm which calls itself with "smaller (or simpler)" input values, and which obtains the result for the current input by applying simple operations to the returned value for the smaller (or simpler) input. More generally if a problem can be solved utilizing solutions to smaller versions of the same problem, and the smaller versions reduce to easily solvable cases, then one can use a recursive algorithm to solve that problem. For example, the elements of a recursively defined set, or the value of a recursively defined function can be obtained by a recursive algorithm.

If a set or a function is defined recursively, then a recursive algorithm to compute its members or values mirrors the definition. Initial steps of the recursive algorithm correspond to the basis clause of the recursive definition and they identify the basis elements. They are then followed by steps corresponding to the inductive clause, which reduce the computation for an element of one generation to that of elements of the immediately preceding generation.

In general, recursive computer programs require more memory and computation compared with iterative algorithms, but they are simpler and for many cases a natural way of thinking about the problem.

Example 1: Algorithm for finding the k-th even natural number Note here that this can be solved very easily by simply outputting 2*(k - 1) for a given k . The purpose here, however, is to illustrate the basic idea of recursion rather than solving the problem.

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
how to synthesize TiO2 nanoparticles by chemical methods
Zubear
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Discrete structures. OpenStax CNX. Jan 23, 2008 Download for free at http://cnx.org/content/col10513/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete structures' conversation and receive update notifications?

Ask