# 0.5 Convolution - discrete time

 Page 1 / 1
Time discrete convolution

## Introduction

The idea of discrete-time convolution is exactly the same as that of continuous-time convolution . For this reason, it may be useful to look at both versions to help yourunderstanding of this extremely important concept. Convolution is a very powerful tool in determining asystem's output from knowledge of an arbitrary input and the system's impulse response.

It also helpful to see convolution graphically, i.e. by using transparencies or Java Applets. Johns Hopkins University has an excellent Discrete time convolution applet. Using this resource will help understanding this crucial concept.

## Derivation of the convolution sum

We know that any discrete-time signal can be represented by a summation of scaled and shifted discrete-time impulses, see . Since we are assuming the system to be linear and time-invariant, itwould seem to reason that an input signal comprised of the sum of scaled and shifted impulses would give rise to an outputcomprised of a sum of scaled and shifted impulse responses. This is exactly what occurs in convolution . Below we present a more rigorous and mathematical look at thederivation:

Letting  be a discrete time LTI system, we start with the folowing equation and work our waydown the the convoluation sum.

$y(n)=(x(n))=(\sum )$ x k n k k x k n k k x k n k k x k h n k
Let us take a quick look at the steps taken in the above derivation. After our initial equation we rewrite the function $x(n)$ as a sum of the function times the unit impulse. Next, we can move around theoperator and the summation because $()$ is a linear, DT system. Because of this linearity and the fact that $x(k)$ is a constant, we pull the constant out and simply multiply it by $()$ . Finally, we use the fact that $()$ is time invariant in order to reach our final state - the convolution sum!

Above the summation is taken over all integers. Howerer, in many practical cases either $x(n)$ or $h(n)$ or both are finite, for which case the summations will be limited.The convolution equations are simple tools which, in principle, can be used for all input signals. Following is an example to demonstrate convolution;how it is calculated and how it is interpreted.

## Graphical illustration of convolution properties

A quick graphical example may help in demonstrating why convolution works.

## Convolution sum

As mentioned above, the convolution sum provides a concise, mathematical way to express the output of an LTI system basedon an arbitrary discrete-time input signal and the system's response. The convolution sum is expressed as

$y(n)=\sum_{k=()}$ x k h n k
As with continuous-time, convolution is represented by the symbol *, and can be written as
$y(n)=(x(n), h(n))$
By making a simple change of variables into the convolution sum, $k=n-k$ , we can easily show that convolution is commutative :
$y(n)=(x(n), h(n))=(h(n), x(n))$
From we get a convolution sum that is equivivalent to the sum in :
$y(n)=\sum_{k=()}$ h k x n k

## Convolution through time (a graphical approach)

In this section we will develop a second graphical interpretation of discrete-time convolution. We will beginthis by writing the convolution sum allowing $x$ to be a causal, length-m signal and $h$ to be a causal, length-k, LTI system. This gives us the finite summation,

$y(n)=\sum_{l=0}^{m-1} x(l)h(n-l)$
Notice that for any given $n$ we have a sum of the $m$ products of $x(l)$ and a time-delayed $h(n-l)$ . This is to say that we multiply the terms of $x$ by the terms of a time-reversed $h$ and add them up.

Going back to the previous example:

What we are doing in the above demonstration is reversing the impulse response in time and "walking it across" the inputsignal. Clearly, this yields the same result as scaling, shifting and summing impulse responses.

This approach of time-reversing, and sliding across is a common approach to presenting convolution, since itdemonstrates how convolution builds up an output through time.

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!