<< Chapter < Page Chapter >> Page >

Solution for (a)

Momentum is conserved because the net external force on the puck-goalie system is zero.

Conservation of momentum is

p 1 + p 2 = p 1 + p 2 size 12{p rSub { size 8{1} } +p rSub { size 8{2} } = { {p}} sup { ' } rSub { size 8{1} } + { {p}} sup { ' } rSub { size 8{2} } } {}

or

m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2 . size 12{m rSub { size 8{1} } v rSub { size 8{1} } +m rSub { size 8{2} } v rSub { size 8{2} } =m rSub { size 8{1} } { {v}} sup { ' } rSub { size 8{1} } +m rSub { size 8{2} } { {v}} sup { ' } rSub { size 8{2} } } {}

Because the goalie is initially at rest, we know v 2 = 0 size 12{v rSub { size 8{2} } =0} {} . Because the goalie catches the puck, the final velocities are equal, or v 1 = v 2 = v size 12{ { {v}} sup { ' } rSub { size 8{1} } = { {v}} sup { ' } rSub { size 8{2} } =v'} {} . Thus, the conservation of momentum equation simplifies to

m 1 v 1 = m 1 + m 2 v . size 12{m rSub { size 8{1} } v rSub { size 8{1} } = left (m rSub { size 8{1} } +m rSub { size 8{2} } right )v'} {}

Solving for v size 12{v'} {} yields

v = m 1 m 1 + m 2 v 1 . size 12{v'= { {m rSub { size 8{1} } } over {m rSub { size 8{1} } +m rSub { size 8{2} } } } v rSub { size 8{1} } } {}

Entering known values in this equation, we get

v = 0.150 kg 70.0 kg + 0.150 kg 35 .0 m/s = 7 . 48 × 10 2 m/s . size 12{v'= left ( { {0 "." "150"`"kg"} over {"70" "." 0`"kg"+0 "." "150"`"kg"} } right ) left ("35" "." 0`"m/s" right )=7 "." "48" times "10" rSup { size 8{ - 2} } `"m/s" "." } {}

Discussion for (a)

This recoil velocity is small and in the same direction as the puck’s original velocity, as we might expect.

Solution for (b)

Before the collision, the internal kinetic energy KE int size 12{"KE" rSub { size 8{"int"} } } {} of the system is that of the hockey puck, because the goalie is initially at rest. Therefore, KE int size 12{"KE" rSub { size 8{"int"} } } {} is initially

KE int = 1 2 mv 2 = 1 2 0 . 150 kg 35 .0 m/s 2 = 91 . 9 J .

After the collision, the internal kinetic energy is

KE int = 1 2 m + M v 2 = 1 2 70 . 15 kg 7 . 48 × 10 2 m/s 2 = 0.196 J.

The change in internal kinetic energy is thus

KE int KE int = 0.196 J 91.9 J = 91.7 J

where the minus sign indicates that the energy was lost.

Discussion for (b)

Nearly all of the initial internal kinetic energy is lost in this perfectly inelastic collision. KE int size 12{"KE" rSub { size 8{"int"} } } {} is mostly converted to thermal energy and sound.

During some collisions, the objects do not stick together and less of the internal kinetic energy is removed—such as happens in most automobile accidents. Alternatively, stored energy may be converted into internal kinetic energy during a collision. [link] shows a one-dimensional example in which two carts on an air track collide, releasing potential energy from a compressed spring. [link] deals with data from such a collision.

An uncoiled spring is connected to a glider with triangular cross sectional area of mass m 1 which moves with velocity v 1 toward the right. Another solid glider of mass m 2 and triangular cross sectional area moves toward the left with velocity V 2 on a frictionless surface. The total momentum is the sum of their individual momentum p 1 and p 2. After collision m 1 moves to the left with velocity V 1 prime and momentum p 1prime. M 2 moves to the right with velocity V 2 prime. Their individual momentum becomes p 1prime and p 2 prime but the total momentum remains the same. The internal kinetic energy after collision is greater than the kinetic energy before collision.
An air track is nearly frictionless, so that momentum is conserved. Motion is one-dimensional. In this collision, examined in [link] , the potential energy of a compressed spring is released during the collision and is converted to internal kinetic energy.

Collisions are particularly important in sports and the sporting and leisure industry utilizes elastic and inelastic collisions. Let us look briefly at tennis. Recall that in a collision, it is momentum and not force that is important. So, a heavier tennis racquet will have the advantage over a lighter one. This conclusion also holds true for other sports—a lightweight bat (such as a softball bat) cannot hit a hardball very far.

The location of the impact of the tennis ball on the racquet is also important, as is the part of the stroke during which the impact occurs. A smooth motion results in the maximizing of the velocity of the ball after impact and reduces sports injuries such as tennis elbow. A tennis player tries to hit the ball on the “sweet spot” on the racquet, where the vibration and impact are minimized and the ball is able to be given more velocity. Sports science and technologies also use physics concepts such as momentum and rotational motion and vibrations.

Calculating final velocity and energy release: two carts collide

In the collision pictured in [link] , two carts collide inelastically. Cart 1 (denoted m 1 size 12{m rSub { size 8{1} } } {} carries a spring which is initially compressed. During the collision, the spring releases its potential energy and converts it to internal kinetic energy. The mass of cart 1 and the spring is 0.350 kg, and the cart and the spring together have an initial velocity of 2 . 00 m/s size 12{2 "." "00"`"m/s"} {} . Cart 2 (denoted m 2 size 12{m rSub { size 8{2} } } {} in [link] ) has a mass of 0.500 kg and an initial velocity of 0 . 500 m/s size 12{ - 0 "." "500"`"m/s"} {} . After the collision, cart 1 is observed to recoil with a velocity of 4 . 00 m/s size 12{ - 4 "." "00"`"m/s"} {} . (a) What is the final velocity of cart 2? (b) How much energy was released by the spring (assuming all of it was converted into internal kinetic energy)?

Strategy

We can use conservation of momentum to find the final velocity of cart 2, because F net = 0 size 12{F rSub { size 8{"net"} } =0} {} (the track is frictionless and the force of the spring is internal). Once this velocity is determined, we can compare the internal kinetic energy before and after the collision to see how much energy was released by the spring.

Solution for (a)

As before, the equation for conservation of momentum in a two-object system is

m 1 v 1 + m 2 v 2 = m 1 v 1 + m 2 v 2 .

The only unknown in this equation is v 2 . Solving for v 2 and substituting known values into the previous equation yields

v 2 = m 1 v 1 + m 2 v 2 m 1 v 1 m 2 = 0.350 kg 2.00 m/s + 0.500 kg 0.500 m/s 0.500 kg 0.350 kg 4.00 m/s 0.500 kg = 3.70 m/s.

Solution for (b)

The internal kinetic energy before the collision is

KE int = 1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 = 1 2 0 . 350 kg 2.00 m/s 2 + 1 2 0 . 500 kg 0 . 500 m/s 2 = 0 . 763 J .

After the collision, the internal kinetic energy is

KE int = 1 2 m 1 v 1 2 + 1 2 m 2 v 2 2 = 1 2 0.350 kg - 4.00 m/s 2 + 1 2 0.500 kg 3.70 m/s 2 = 6.22 J.

The change in internal kinetic energy is thus

KE int KE int = 6.22 J 0 . 763 J = 5.46 J.

Discussion

The final velocity of cart 2 is large and positive, meaning that it is moving to the right after the collision. The internal kinetic energy in this collision increases by 5.46 J. That energy was released by the spring.

Questions & Answers

so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
(a) Find the recoil velocity of a 70.0-kg ice hockey goalie, originally at rest, who catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/s. (b) How much kinetic energy is lost during the collision? Assume friction between the ice and the puck-goalie system is negligible. (Figure 8.9)
Kamal Reply
Calculate the velocities of two objects following an elastic collision, given that m1 = 0.500 kg, m2 = 3.50 kg, v1 = 4.00 m/s, and v2 = 0.
Kamal Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Unit 6 - momentum. OpenStax CNX. Jan 22, 2016 Download for free at https://legacy.cnx.org/content/col11961/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Unit 6 - momentum' conversation and receive update notifications?

Ask