<< Chapter < Page Chapter >> Page >
  • Apply principles of vector addition to determine relative velocity.
  • Explain the significance of the observer in the measurement of velocity.

Relative velocity

If a person rows a boat across a rapidly flowing river and tries to head directly for the other shore, the boat instead moves diagonally relative to the shore, as in [link] . The boat does not move in the direction in which it is pointed. The reason, of course, is that the river carries the boat downstream. Similarly, if a small airplane flies overhead in a strong crosswind, you can sometimes see that the plane is not moving in the direction in which it is pointed, as illustrated in [link] . The plane is moving straight ahead relative to the air, but the movement of the air mass relative to the ground carries it sideways.

A boat is trying to cross a river. Due to the velocity of river the path traveled by boat is diagonal. The velocity of boat v boat is in positive y direction. The velocity of river v river is in positive x direction. The resultant diagonal velocity v total which makes an angle of theta with the horizontal x axis is towards north east direction.
A boat trying to head straight across a river will actually move diagonally relative to the shore as shown. Its total velocity (solid arrow) relative to the shore is the sum of its velocity relative to the river plus the velocity of the river relative to the shore.
An airplane is trying to fly straight north with velocity v sub p. Due to wind velocity v sub w in south west direction making an angle theta with the horizontal axis, the plane’s total velocity is thirty eight point 0 meters per seconds oriented twenty degrees west of north.
An airplane heading straight north is instead carried to the west and slowed down by wind. The plane does not move relative to the ground in the direction it points; rather, it moves in the direction of its total velocity (solid arrow).

In each of these situations, an object has a velocity    relative to a medium (such as a river) and that medium has a velocity relative to an observer on solid ground. The velocity of the object relative to the observer is the sum of these velocity vectors, as indicated in [link] and [link] . These situations are only two of many in which it is useful to add velocities. In this module, we first re-examine how to add velocities and then consider certain aspects of what relative velocity means.

How do we add velocities? Velocity is a vector (it has both magnitude and direction); the rules of vector addition    discussed in Vector Addition and Subtraction: Graphical Methods and Vector Addition and Subtraction: Analytical Methods apply to the addition of velocities, just as they do for any other vectors. In one-dimensional motion, the addition of velocities is simple—they add like ordinary numbers. For example, if a field hockey player is moving at 5 m/s size 12{"5 m/s"} {} straight toward the goal and drives the ball in the same direction with a velocity of 30 m/s size 12{"30 m/s"} {} relative to her body, then the velocity of the ball is 35 m/s size 12{"35 m/s"} {} relative to the stationary, profusely sweating goalkeeper standing in front of the goal.

In two-dimensional motion, either graphical or analytical techniques can be used to add velocities. We will concentrate on analytical techniques. The following equations give the relationships between the magnitude and direction of velocity ( v size 12{v} {} and θ size 12{θ} {} ) and its components ( v x size 12{v rSub { size 8{x} } } {} and v y size 12{v rSub { size 8{y} } } {} ) along the x - and y -axes of an appropriately chosen coordinate system:

v x = v cos θ size 12{v rSub { size 8{x} } =v"cos"θ} {}
v y = v sin θ size 12{v rSub { size 8{y} } =v"sin"θ} {}
v = v x 2 + v y 2 size 12{v= sqrt {v rSub { size 8{x} } rSup { size 8{2} } +v rSub { size 8{y} } rSup { size 8{2} } } } {}
θ = tan 1 ( v y / v x ) . size 12{θ="tan" rSup { size 8{ - 1} } \( v rSub { size 8{y} } /v rSub { size 8{x} } \) } {}
The figure shows components of velocity v in horizontal x axis v x and in vertical y axis v y. The angle between the velocity vector v and the horizontal axis is theta.
The velocity, v size 12{v} {} , of an object traveling at an angle θ size 12{θ} {} to the horizontal axis is the sum of component vectors v x size 12{v} {subx} and v y size 12{v} {suby} .

These equations are valid for any vectors and are adapted specifically for velocity. The first two equations are used to find the components of a velocity when its magnitude and direction are known. The last two are used to find the magnitude and direction of velocity when its components are known.

Questions & Answers

so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, 2d kinematics. OpenStax CNX. Sep 04, 2015 Download for free at http://legacy.cnx.org/content/col11879/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the '2d kinematics' conversation and receive update notifications?