<< Chapter < Page Chapter >> Page >

Other vector lengths

If V L > 1 , the list of nodes that results from the elaborate function in [link] is vectorized. Broadly speaking, CNodeLoad objects that operate on adjacent memory locations are collected together and computed in parallel. After each such computation, each position in a vector register contains an element that belongs to a different node. Transposes are then used to transform sets of vector registers such that each register contains elements from one node. Finally, the CNodeBfly objects can be easily computed in parallel, as they were with VL-1 because the elements in each vector register correspond to one node.

Overview

[link] lists the nodes that represent a VL-1 size-16 transform. A VL of 2 implies that each vector register contains 2 complex words, and load operations on each of the 4 addresses in the first row of [link] will also load the complex words in the adjacent memory locations. Note that the complex words that would be incidentally loaded in the upper half of the VL-2 registers are the complex words that the third CNodeLoad object at row 5 would have loaded. This is exploited to load and compute the first and third CNodeLoad objects in parallel.

VL-1 size-16 conjugate-pair transform nodes
Type Size Addresses Registers Twiddle
CNodeLoad 4 {0,8,4,12} {0,1,2,3}
CNodeLoad 2(x2) {2,10,14,6} {4,5,6,7}
CNodeBfly 4 {0,2,4,6} ω 16 0
CNodeBfly 4 {1,3,5,7} ω 16 2
CNodeLoad 4 {1,9,5,13} {8,9,10,11}
CNodeLoad 4 {15,7,3,11} {12,13,14,15}
CNodeBfly 4 {0,4,8,12} ω 16 0
CNodeBfly 4 {1,5,9,13} ω 16 1
CNodeBfly 4 {2,6,10,14} ω 16 2
CNodeBfly 4 {3,7,11,15} ω 16 3
VL-2 size-16 conjugate-pair transform nodes
Type Sizes Addresses Registers Twiddles
Load {4,4} {{0,1},{8,9},{4,5},{12,13}} {{0,1},{2,3},{8,9},{10,11}}
Load {2(x2),4} {{2,3},{10,11},{14,15},{6,7}} {{4,5},{6,7},{14,15},{12,13}}
Bfly {4,4} {{0,1},{2,3},{4,5},{6,7}} { ω 16 0 , ω 16 2 }
Bfly {4,4} {{0,1},{4,5},{8,9},{12,13}} { ω 16 0 , ω 16 1 }
Bfly {4,4} {{2,3},{6,7},{10,11},{14,15}} { ω 16 2 , ω 16 3 }

The second CNodeLoad object computes two size-2 leaf transforms in parallel, while the last CNodeLoad object computes a size-4 leaf transform. Because the size-4 transform is composed of two size-2 transforms, and memory addresses of the fourth CNodeLoad are adjacent (although permuted), some of the computation can be computed in parallel.

If the CNodeLoad objects at rows 1 and 5 are computed in parallel, the output will be four VL-2 registers: {{0,8}, {1,9}, {2,10}, {3,11}} – i.e., the first register contains what would have been register 0 in the lower half, and what would have been register 8 in the top half etc. Similarly, computing rows 2 and 6 in parallel would yield four VL-2 registers: {{4,14}, {5,15}, {6,12}, {7,13}} – note the permutation of the upper halves in this case. These registers are transposed to {{0,1}, {2,3}, {8,9}, {10,11}} and {{4,5}, {6,7}, {14,15}, {12,13}}, as in row 1 and 2 of [link] .

With the transposed VL-2 registers, it is now possible to compute CNodeBfly nodes in parallel. For example, rows 2 and 3 of [link] can be computed in parallel on four VL-2 registers represented by {{0,1}, {2,3}, {4,5}, {6,7}}, as in row 3 of [link] .

Implementation

[link] is a C++ implementation of the vectorize_loads function. This function modifies a topological ordering of nodes (the class member variable ns ) and uses two other functions: find_parallel_loads , which searches forward from the current node to find another CNodeLoad that shares adjacent memory addresses; and merge_loads(a,b) , which adds the addresses, registers and type of b to a . Type introspection is used at lines 7 and 36 (and in other Listings), to differentiate between the two types of object.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Computing the fast fourier transform on simd microprocessors. OpenStax CNX. Jul 15, 2012 Download for free at http://cnx.org/content/col11438/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Computing the fast fourier transform on simd microprocessors' conversation and receive update notifications?

Ask