<< Chapter < Page Chapter >> Page >

min z ( x ) = i j c ij x ij size 12{"min"" z" \( x \) = Sum cSub { size 8{i} } { Sum cSub { size 8{j} } {c rSub { size 8{ ital "ij"} } x rSub { size 8{ ital "ij"} } } } } {}

Với các phân tích trên ta có mô hình của bài toán như sau :

min z ( x ) = i = 1 n j = 1 n c ij x ij ( 1 ) j = 1 n x ij = a i ( i = 1,2, . . . ,m ) i = 1 m x ij = b j ( j = 1,2, . . . ,n ) ( 2 ) x ij 0 ( 3 ) { alignl { stack { size 12{"min"" z" \( x \) = Sum cSub { size 8{i=1} } cSup { size 8{n} } { Sum cSub { size 8{j=1} } cSup { size 8{n} } {c rSub { size 8{"ij"} } x rSub { size 8{ ital "ij"} } } } " " \( 1 \) } {} #alignl { stack { left lbrace Sum cSub { size 8{j=1} } cSup { size 8{n} } {x rSub { size 8{"ij"} } } =a rSub { size 8{i} } " " \( i="1,2," "." "." "." ",m" \) {} #right none left lbrace Sum cSub { size 8{i=1} } cSup { size 8{m} } {x rSub { size 8{"ij"} } =b rSub { size 8{j} } } " " \( j="1,2," "." "." "." ",n" \) {} # right no } } lbrace " " \( 2 \) {} #x rSub { size 8{"ij"} }>= 0" " \( 3 \) {} } } {}

Phương án - Phương án tối ưu

Một ma trận X=[xij]m.n thỏa (2) và (3) được gọi là phương án, thỏa thêm (1) được gọi là phương án tối ưu.

b- Dạng bảng của bài toán vận tải

Có thể giải bài toán vận tải theo cách của quy hoạch tuyến tính. Tuy nhiên do tính chất đặc biệt của bài toán vận tải nên người ta nghĩ ra một thuật toán hiệu quả hơn. Trước tiên người ta trình bày bài toán vận tải dưới dạng bảng như sau :

ThuCướcPhát b1 b2 .... bj .... bn
a1 c11x11 c12x12 ........ c1jx1j ........ c1nx1n
a2 c21x21 c22x22 ........ c2jx2j ........ c2nx2n
.... .... .... .... .... ....
ai ci1xi1 ci2xi2 ........ cijxij ........ cinxin
.... .... .... .... .... .... ....
am cm1xm1 cm2xm2 ........ cmjxmj ........ cmnxmn

Trong bảng mỗi hàng mô tả một điểm phát, mỗi cột mô tả một điểm thu, mỗi ô mô tả một tuyến đường đi từ một điểm phát tới một điểm thu.

Dây chuyền - Chu trình

Một dãy các ô của bảng mà hai ô liên tiếp nằm trong cùng một hàng hoặc một cột, ba ô liên tiếp không cùng nằm trên một hàng hoặc một cột được gọi là một dây chuyền. Ta thấy rằng hai ô liền nhau trong một dây chuyền có chỉ số hàng hoặc chỉ số cột bằng nhau

x x
x x
x x

Dây chuyền : (1,2) (1,3) (2,3) (2,4) (4,4) (4,1)

Một dây chuyền khép kín, ô đầu tiên và ô cuối cùng bằng nhau, được gọi là một chu trình.Ta thấy rằng số ô trong một chu trình là một số chẵn.

x x
x x
x x

Chu trình : (1,1) (1,3) (2,3) (2,4) (4,4) (4,1) (1,1)

Ô chọn - Ô loại

Giả sử ma trận X=[xij]m.n (i=1,2,...,m) (j=1,2,...,n) là một phương án của bài toán vận tải.

Những ô trong bảng tương ứng với xij>0 được gọi là ô chọn, những ô còn lại được gọi là ô loại.

Phương án cơ bản

Một phương án mà các ô chọn không tạo thành một chu trình được gọi là phương án cơ bản.

Một phương án có đủ m+n-1 ô chọn được gọi là không suy biến, có ít hơn m+n-1 ô chọn được gọi là suy biến. Trong trường hợp suy biến người ta chọn bổ sung vào phương án cơ bản một số ô loại có lượng hàng bằng 0 để phương án cơ bản trở thành không suy biến

c- Giải bài toán vận tải

Xét bài toán vận tải có số lượng phát, số lượng thu và ma trân cước phí ở dạng bảng như sau :

80 20 60
50 5 4 1
40 3 2 6
70 7 9 11


Phương án cơ bản ban đầu được xác định bằng cách ưu tiên phân phối nhiều nhất vào ô có cước phí nhỏ nhất (r,s) ( gọi là ô chọn). Khi đó : nếu điểm phát r đã phát hết hàng thì xóa hàng r của bảng và số lượng cần thu tại điểm s chỉ còn là bs-ar ; nếu điểm thu s đã nhận đủ hàng thì xóa cột s của bảng và số lượng phát còn lại tại điểm phát r là ar-bs

Bảng mới thu được có kích thước giảm đi. Tiếp tục phân phối như trên cho đến khi hết hàng.

Các ô chọn trong quá trình phân phối, sẽ không chứa chu trình, là một phương án cơ bản. Nếu phương án cơ bản suy biến, chưa đủ m+n-1 ô, thì bổ sung thêm một số " ô chọn 0 "

Áp dụng vào bài toán đang xét :

1- Phân vào ô (1,3) 50 . Hàng (1) bị xóa . Cột (3) còn thu 60-50=10

80 20 10
0 5 4 1 50
40 3 2 6
70 7 9 11

2- Phân vào ô (2,2) 20 . Cột (2) bị xóa . Hàng (2) còn phát 40-20=20

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
is it a question of log
I rally confuse this number And equations too I need exactly help
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Quy hoạch tuyến tính. OpenStax CNX. Aug 08, 2009 Download for free at http://cnx.org/content/col10903/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Quy hoạch tuyến tính' conversation and receive update notifications?