# 0.3 Gravity and mechanical energy  (Page 4/9)

 Page 4 / 9

A ball is dropped from the balcony of a tall building. The balcony is $15\phantom{\rule{2pt}{0ex}}m$ above the ground. Assuming gravitational acceleration is $9,8\phantom{\rule{2pt}{0ex}}m·s{}^{-2}$ , find:

1. the time required for the ball to hit the ground, and
2. the velocity with which it hits the ground.
1. It always helps to understand the problem if we draw a picture like the one below:

2. We have these quantities:

$\begin{array}{ccc}\hfill \Delta x& =& 15\phantom{\rule{4pt}{0ex}}\phantom{\rule{0.166667em}{0ex}}\mathrm{m}\hfill \\ \hfill {v}_{i}& =& 0\phantom{\rule{4pt}{0ex}}\phantom{\rule{0.166667em}{0ex}}\mathrm{m}·{\mathrm{s}}^{-1}\hfill \\ \hfill g& =& 9,8\phantom{\rule{4pt}{0ex}}\phantom{\rule{0.166667em}{0ex}}\mathrm{m}·{\mathrm{s}}^{-2}\hfill \end{array}$
3. Since the ball is falling, we choose down as positive. This means that the values for ${v}_{i}$ , $\Delta x$ and $a$ will be positive.

4. We can use [link] to find the time: $\Delta x={v}_{i}t+\frac{1}{2}g{t}^{2}$

5. $\begin{array}{ccc}\hfill \Delta x& =& {v}_{i}t+\frac{1}{2}g{t}^{2}\hfill \\ \hfill 15& =& \left(0\right)t+\frac{1}{2}\left(9,8\right){\left(t\right)}^{2}\hfill \\ \hfill 15& =& 4,9\phantom{\rule{3.33333pt}{0ex}}{t}^{2}\hfill \\ \hfill {t}^{2}& =& 3,0612...\hfill \\ \hfill t& =& 1,7496...\hfill \\ \hfill t& =& 1,75\phantom{\rule{3.33333pt}{0ex}}s\hfill \end{array}$
6. Using [link] to find ${v}_{f}$ :

$\begin{array}{ccc}\hfill {v}_{f}& =& {v}_{i}+gt\hfill \\ \hfill {v}_{f}& =& 0+\left(9,8\right)\left(1,7496...\right)\hfill \\ \hfill {v}_{f}& =& 17,1464...\hfill \end{array}$

Remember to add the direction: ${v}_{f}=17,15\phantom{\rule{2pt}{0ex}}m·s{}^{-1}$ downwards.

By now you should have seen that free fall motion is just a special case of motion with constant acceleration, and we use the same equations as before. The only difference is that the value for the acceleration, $a$ , is always equal to the value of gravitational acceleration, $g$ . In the equations of motion we can replace $a$ with $g$ .

## Gravitational acceleration

1. A brick falls from the top of a $5\phantom{\rule{2pt}{0ex}}m$ high building. Calculate the velocity with which the brick reaches the ground. How long does it take the brick to reach the ground?
2. A stone is dropped from a window. It takes the stone $1,5\phantom{\rule{2pt}{0ex}}s$ to reach the ground. How high above the ground is the window?
3. An apple falls from a tree from a height of $1,8\phantom{\rule{2pt}{0ex}}m$ . What is the velocity of the apple when it reaches the ground?

## Potential energy

The potential energy of an object is generally defined as the energy an object has because of its position relative to other objects that it interacts with. There are different kinds of potential energy such as gravitional potential energy, chemical potential energy, electrical potential energy, to name a few. In this section we will be looking at gravitational potential energy.

Potential energy

Potential energy is the energy an object has due to its position or state.

Gravitational potential energy is the energy of an object due to its position above the surface of the Earth. The symbol $PE$ is used to refer to gravitational potential energy. You will often find that the words potential energy are used where gravitational potential energy is meant. We can define potential energy (or gravitational potential energy, if you like) as:

$PE=mgh$

where PE = potential energy measured in joules (J)

m = mass of the object (measured in kg)

g = gravitational acceleration ( $9,8\phantom{\rule{2pt}{0ex}}m·s{}^{-2}$ )

h = perpendicular height from the reference point (measured in m)

A suitcase, with a mass of $1\phantom{\rule{2pt}{0ex}}\mathrm{kg}$ , is placed at the top of a $2\phantom{\rule{2pt}{0ex}}m$ high cupboard. By lifting the suitcase against the force of gravity, we give the suitcase potential energy. This potential energy can be calculated using [link] .

what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!