<< Chapter < Page Chapter >> Page >
this module considers the effect on power spectrum of noise after ffiltering

Psd after filtering:

The relation between a ,b and c and φ size 12{φ} {} which describe the noise components can be seen to be identical with that between X,Y and R and θ size 12{θ} {} .

Hence pdf of c is Rayleigh and that of θ size 12{θ} {} is uniform.

f c k = c k P k e c k 2 / 2P k c k 0 size 12{f left (c rSub { size 8{k} } right )= { {c rSub { size 8{k} } } over {P rSub { size 8{k} } } } e rSup { size 8{ - c rSub { size 6{k} } rSup { size 6{2} } /2P rSub { size 6{k} } } } ~c rSub {k} size 12{>= 0}} {} , f θ k = 1 π θ k π size 12{f left (θrSub { size 8{k} } right )= { {1} over {2π} } ~ -π<=θrSub { size 8{k} }<=π} {}

Let a spectral component of noise be the input to a filter whose transfer function at frequency kΔf size 12{kΔf} {} is

H kΔf = H kΔf e jϕk = H kΔf ϕ k size 12{H left (kΔf right )= lline H left (kΔf right ) rline e rSup { size 8{jϕk} } = lline H left (kΔf right ) rline∠ϕrSub { size 8{k} } } {}

The output spectral component of noise is

n ko t = H kΔf a k cos 2πkΔ ft + ϕ k + H kΔf b k sin 2πkΔ ft + ϕ k size 12{n rSub { size 8{ ital "ko"} } left (t right )= lline H left (kΔf right ) rline a rSub { size 8{k} } "cos" left (2πkΔital "ft"+ϕrSub { size 8{k} } right )+ lline H left (kΔf right ) rline b rSub { size 8{k} } "sin" left (2πkΔital "ft"+ϕrSub { size 8{k} } right )} {}

The power associated with the input component is

P ki = a k 2 ¯ + b k 2 ¯ 2 size 12{P rSub { size 8{ ital "ki"} } = { { {overline {a rSub { size 8{k} } rSup { size 8{2} } }} + {overline {b rSub { size 8{k} } rSup { size 8{2} } }} } over {2} } } {}

As H kΔf size 12{ lline H left (kΔf right ) rline } {} is a deterministic function, H kΔf a k 2 ¯ = H kΔf 2 a k 2 ¯ size 12{ {overline { left [ lline H left (kΔf right ) rline a rSub { size 8{k} } right ] rSup { size 8{2} } }} = lline H left (kΔf right ) rline rSup { size 8{2} } {overline {a rSub { size 8{k} } rSup { size 8{2} } }} } {}

Similarly for b k size 12{b rSub { size 8{k} } } {} , and thus the power associated with noise output is

P ko = H kΔf 2 a k 2 ¯ + b k 2 ¯ 2 size 12{P rSub { size 8{ ital "ko"} } = lline H left (kΔf right ) rline rSup { size 8{2} } { { {overline {a rSub { size 8{k} } rSup { size 8{2} } }} + {overline {b rSub { size 8{k} } rSup { size 8{2} } }} } over {2} } } {}

And the power spectral densities are related by

G no f = H f 2 G ni f size 12{G rSub { size 8{ ital "no"} } left (f right )= lline H left (f right ) rline rSup { size 8{2} } G rSub { size 8{ ital "ni"} } left (f right )} {}

Where the kΔf size 12{kΔf} {} has been replaced by f size 12{f} {} as a continuous variable as Δf size 12{Δf} {} tends to 0.

Superposition of noises:

 Noise can be represented as superposition of (orthogonal) harmonics of Δf size 12{Δf} {} therefore total power is the result of superposition of component powers.

Consider Two processes n 1 size 12{n rSub { size 8{1} } } {} and n 2 size 12{n rSub { size 8{2} } } {} with overlapping spectral components.

Power of the sum of n 1 size 12{n rSub { size 8{1} } } {} and n 2 size 12{n rSub { size 8{2} } } {} will be p 1 + p 2 + 2 E n 1 n 2 size 12{p rSub { size 8{1} } +p rSub { size 8{2} } +2E left [n rSub { size 8{1} } n rSub { size 8{2} } right ]} {} and since n 1 size 12{n rSub { size 8{1} } } {} and n 2 size 12{n rSub { size 8{2} } } {} are uncorrelated, the last term = 0.

Then these noises also obey the superposition of powers rule.

Mixing of noise with a sinusoid

 If k th size 12{k rSup { size 8{ ital "th"} } } {} component of noise is mixed with a sinusoid

n k t cos 2πf o t = a k 2 cos kΔf + f o t + b k 2 sin kΔf + f o t + a k 2 cos kΔf f o t + b k 2 sin kΔf + f o t alignl { stack { size 12{n rSub { size 8{k} } left (t right )"cos"2πf rSub { size 8{o} } t= { {a rSub { size 8{k} } } over {2} } "cos"2πleft (kΔf+f rSub { size 8{o} } right )t+ { {b rSub { size 8{k} } } over {2} } "sin"2πleft (kΔf+f rSub { size 8{o} } right )t} {} # + { {a rSub { size 8{k} } } over {2} } "cos"2πleft (kΔf - f rSub { size 8{o} } right )t+ { {b rSub { size 8{k} } } over {2} } "sin"2πleft (kΔf+f rSub { size 8{o} } right )t {} } } {}

Sum and difference frequency noise spectral components with 1/2 amplitude are generated and

G n f + f o = G n f f o = G n f 4 size 12{G rSub { size 8{n} } left (f+f rSub { size 8{o} } right )=G rSub { size 8{n} } left (f - f rSub { size 8{o} } right )= { {G rSub { size 8{n} } left (f right )} over {4} } } {}

Considering power spectral components at kΔf size 12{kΔf} {} and lΔf size 12{lΔf} {} , let the mixing frequency be f 0 = k + l Δf size 12{f rSub { size 8{0} } = { size 8{1} } wideslash { size 8{2} } left (k+l right )Δf} {} . This will generate 2 difference frequency components at the same frequency: pΔf = f 0 kΔf = lΔf f 0 size 12{pΔf=f rSub { size 8{0} } - kΔf=lΔf - f rSub { size 8{0} } } {}

 

Then difference frequency components are

n p1 t = a k 2 cos 2πpΔ ft b k 2 sin 2πpΔ ft size 12{n rSub { size 8{p1} } left (t right )= { {a rSub { size 8{k} } } over {2} } "cos"2πpΔital "ft" - { {b rSub { size 8{k} } } over {2} } "sin"2πpΔital "ft"} {}
n p2 t = a l 2 cos 2πpΔ ft + b l 2 sin 2πpΔ ft size 12{n rSub { size 8{p2} } left (t right )= { {a rSub { size 8{l} } } over {2} } "cos"2πpΔital "ft"+ { {b rSub { size 8{l} } } over {2} } "sin"2πpΔital "ft"} {}

But as a k a l ¯ = a k b l ¯ = b k a l ¯ = b k b l ¯ = 0 size 12{ {overline {a rSub { size 8{k} } a rSub { size 8{l} } }} = {overline {a rSub { size 8{k} } b rSub { size 8{l} } }} = {overline {b rSub { size 8{k} } a rSub { size 8{l} } }} = {overline {b rSub { size 8{k} } b rSub { size 8{l} } }} =0} {} , We find E n p1 t n p2 t = 0 size 12{E left [n rSub { size 8{p1} } left (t right )n rSub { size 8{p2} } left (t right ) right ]=0} {}

and E n p1 t + n p2 t 2 = E n p1 t 2 + E n p2 t 2 size 12{E left lbrace left [n rSub { size 8{p1} } left (t right )+n rSub { size 8{p2} } left (t right ) right ] rSup { size 8{2} } right rbrace =E left lbrace left [n rSub { size 8{p1} } left (t right ) right ]rSup { size 8{2} } right rbrace +E left lbrace left [n rSub { size 8{p2} } left (t right ) right ] rSup { size 8{2} } right rbrace } {}

Thus superposition of power applies even after shifting due to mixing.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Noise in communications. OpenStax CNX. Jul 07, 2008 Download for free at http://cnx.org/content/col10549/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Noise in communications' conversation and receive update notifications?

Ask