<< Chapter < Page Chapter >> Page >
The Conclusion module of the Sparse Signal Recovery in the Presence of Noise collection.


With priming , the regression line correlating number of samples and standard deviation is roughly (sd^2)/6.5 + 1, which amounts to O(N^2) complexity. However, although this may seem slow, our method permits perfect recovery of complicated (albeit sparse) signals with arbitrary levels of AWGN . Thus, for reasonable data set sizes and values of standard deviation, the algorithm functions quite nicely for accurate signal reconstruction. Although if given infinite samples and time, it can recover any signal that is relatively sparse given infinite time.

Without priming the noise, and taking 50 samples, we can achieve O(1) complexity – extremely desirable, but the recovery percentage falls off rapidly with increase in noise standard deviation starting at standard deviation values around 3.5. Thus, this version of the algorithm could be desirable in non-critical applications where the strength of the noise is known to be low relative to that of the signal. We certainly would not recommend using the non-primed algorithm in data sensitive digital applications.

Further avenues of inquiry

Colored noise

It would be interesting to extend the algorithm to accept different types of noise – pink, brown, purple, etc. Logically the exact same algorithm would work on these, but it would be nice to verify this experimentally.

Physical prototype

A physical prototype of this system would allow a far better testing of the theory than simple simulation. Unfortunately, due to the cost of even moderate quality receivers and FPGAs, this was not feasible.

Dynamic noise

One major benefit of a noise resistant system is ECCM, Electronic Counter Countermeasures (counter-jamming). It would be interesting to test whether a system using the described algorithm could resist noise from a transmitter moving towards the system (without simply taking a conservative estimate of worst-case noise during the signal reconstruction period).

Dynamic priming

A useful addition to this algorithm, would be to be able to pick the optimal bound for priming to minimize the number of samples rather than simply choosing the best of two options.

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Sparse signal recovery in the presence of noise. OpenStax CNX. Dec 14, 2009 Download for free at http://cnx.org/content/col11144/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sparse signal recovery in the presence of noise' conversation and receive update notifications?