<< Chapter < Page Chapter >> Page >

Trong việc khai thác các đài phát AM, người ta xem tầng phổ như là “ tài nguyên thiên nhiên “. Việc bảo quản cho nó là một chỉ tiêu quan trọng. Nếu khổ băng cần thiết cho mỗi kênh rộng quá, Thì số đài phát sóng cùng một lúc sẽ ít đi. Ta tìm một phương pháp có thể gởi thông tin mà khổ băng thì nhỏ hơn 2fm.

Truyền một băng cạnh là kỷ thuật cho phép truyền phân nữa khổ băng cần thiết cho AM hai băng cạnh.

Hình 4.39: Định nghĩa các cạnh băng

Hình 4.39 định nghĩa các băng cạnh. Phần của sm(t) nằm trong băng trên sóng mang gọi là băng cạnh trên ( upper - sideband ). Và phần ở dưới sóng mang gọi là băng cạnh dưới (lower - sideband). Một sóng AM 2 băng cạnh thì bao gồm cả băng cạnh trên và băng cạnh dưới.

Ta có thể dùng các tín chất của biến đổi F để chứng tỏ rằng 2 băng cạnh nầy phụ thuộc lẫn nhau. Biến đổi F của sóng AM được tạo nên bằng cách dời ( shifting ) S(f) lên và xuống, như đã biết. Băng cạnh dưới tạo nên do phần f âm của S(f); và băng cạnh trên do phần f dương của S(f). Ta giã sữ rằng tín tức s(t) là một hàm thực. Vậy suất của S(f) thì chẵn và pha thì lẽ. Phần f âm có thể suy từ f dương bằng cách lấy phức liên hợp.

Tương tự, băng cạnh dưới của sm(t) có thể suy từ băng cạnh trên. Vì các băng cạnh không độc lập, ta có thể truyền tất cả các thông tin cơ bản bằng cách gửi đi chỉ một băng cạnh.

Hình 4.40: Biến đổi F của các băng cạnh

Hình 4.40 chỉ biến đổi F của băng cạnh trên và băng cạnh dưới của sóng AM, lần lượt ký hiệu là susb(t) là slsb(t). Sóng AM 2 băng cạnh là tổng của 2 băng cạnh.

sm(t) = susb(t) + sLsb(t) (4.22)

Vì sóng SSB chỉ chiếm một phần của băng tần bị chiếm bỡi sóng DSB, nó thỏa 2 yêu cầu của một hệ biến điệu. Đó là, băng cạnh chọn tần số sóng mang riêng, ta có thể chuyển sóng biến điệu thành một khoản tần số, mà ở đó truyền đi một cách hiệu qủa. Ta cũng có thể dùng những băng khác nhau cho những tín hiệu khác nhau (tức fc khác nhau). Nên, cùng lúc có thể truyền đi nhiều tín hiệu (đa hợp).

Chỉ còn một vấn đề cần chứng tỏ. Đó là, thông tin gốc có thể được hồi phực từ sóng được biến điệu SSB. Và sóng biến điệu có thể được tạo ra bởi các mạch tương đối đơn giãn. Vậy ta xét đến các khối biến điệu và hoàn điệu.

Khối biến điệu cho ssb:

Vì băng cạnh trên và băng cạnh dưới tách biệt về tần số, các mạch lọc có thể dùng để chọn băng cạnh mong muốn. Hình 4.41, chỉ khối biến điệu cho băng cạnh dưới (LSB). Có các cách để tạo băng cạnh trên (USB). Ta có thể hoặc thay đổi dãy thông của lọc BPF để chỉ nhận USB, hoặc có thể lấy hệ số giữa DSB và LSB.

Hình 4.41: Khối biến điệu cho LSB, SSB

Hình 4.42: Khối biến điệu cho USB, SSB

Các mạch lọc ở 2 hình bên phải thật chính xác, vì không có dãy tần bảo vệ nào giữa băng cạnh trên và băng cạnh dưới.

* Một phương pháp khác tạo ra SSB. Sơ đồ khối vẽ ỡ hình 43 ( dùng LSB - SSB ). Giã sữ s(t) là một Sinusoide thuần túy. Với trường hợp đơn giản nầy, sự phân tích chỉ cần đến lượng giác.

S(t) = cos2fCt

Sóng DSB Amcó dạng:

sm(t) = cos2fCt + cos2fCt

=

(4.23)

Sự nhận dạng các băng cạnh trong trường hợp đơn giãn nầy thật rỏ ràng: Số hạng thứ nhất là băng cạnh dưới, số hạng thứ nhì là băng cạnh trên.

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Cơ sở viễn thông. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10755/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cơ sở viễn thông' conversation and receive update notifications?

Ask