<< Chapter < Page Chapter >> Page >
 Photo A shows an A. afarensis skull, which is similar in shape but the forehead slopes back and the jaw juts out. Photo A shows a human skull.
The skull of (a) Australopithecus afarensis , an early hominid that lived between two and three million years ago, resembled that of (b) modern humans but was smaller with a sloped forehead and prominent jaw.
Partial skeleton is human-like but child-sized.
This adult female Australopithecus afarensis skeleton, nicknamed Lucy, was discovered in the mid 1970s. (credit: “120”/Wikimedia Commons)

Australopithecus africanus lived between 2 and 3 million years ago. It had a slender build and was bipedal, but had robust arm bones and, like other early hominids, may have spent significant time in trees. Its brain was larger than that of A . afarensis at 500 cubic centimeters, which is slightly less than one-third the size of modern human brains. Two other species, Australopithecus bahrelghazali and Australopithecus garhi , have been added to the roster of australopiths in recent years.

A dead end: genus Paranthropus

The australopiths had a relatively slender build and teeth that were suited for soft food. In the past several years, fossils of hominids of a different body type have been found and dated to approximately 2.5 million years ago. These hominids, of the genus Paranthropus , were relatively large and had large grinding teeth. Their molars showed heavy wear, suggesting that they had a coarse and fibrous vegetarian diet as opposed to the partially carnivorous diet of the australopiths. Paranthropus includes Paranthropus robustus of South Africa, and Paranthropus aethiopicus and Paranthropus boisei of East Africa. The hominids in this genus went extinct more than 1 million years ago and are not thought to be ancestral to modern humans, but rather members of an evolutionary branch on the hominin tree that left no descendants.

Early hominins: genus Homo

The human genus, Homo , first appeared between 2.5 and 3 million years ago. For many years, fossils of a species called H . habilis were the oldest examples in the genus Homo , but in 2010, a new species called Homo gautengensis was discovered and may be older. Compared to A . africanus , H . habilis had a number of features more similar to modern humans. H . habilis had a jaw that was less prognathic than the australopiths and a larger brain, at 600–750 cubic centimeters. However, H . habilis retained some features of older hominin species, such as long arms. The name H . habilis means “handy man,” which is a reference to the stone tools that have been found with its remains.

Watch this video about Smithsonian paleontologist Briana Pobiner explaining the link between hominin eating of meat and evolutionary trends.

H . erectus appeared approximately 1.8 million years ago ( [link] ). It is believed to have originated in East Africa and was the first hominin species to migrate out of Africa. Fossils of H . erectus have been found in India, China, Java, and Europe, and were known in the past as “Java Man” or “Peking Man.” H . erectus had a number of features that were more similar to modern humans than those of H . habilis . H . erectus was larger in size than earlier hominins, reaching heights up to 1.85 meters and weighing up to 65 kilograms, which are sizes similar to those of modern humans. Its degree of sexual dimorphism was less than earlier species, with males being 20 to 30 percent larger than females, which is close to the size difference seen in our species. H . erectus had a larger brain than earlier species at 775–1,100 cubic centimeters, which compares to the 1,130–1,260 cubic centimeters seen in modern human brains. H . erectus also had a nose with downward-facing nostrils similar to modern humans, rather than the forward facing nostrils found in other primates. Longer, downward-facing nostrils allow for the warming of cold air before it enters the lungs and may have been an adaptation to colder climates. Artifacts found with fossils of H . erectus suggest that it was the first hominin to use fire, hunt, and have a home base. H . erectus is generally thought to have lived until about 50,000 years ago.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Genetics and evolution. OpenStax CNX. Aug 07, 2014 Download for free at https://legacy.cnx.org/content/col11595/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Genetics and evolution' conversation and receive update notifications?

Ask