<< Chapter < Page Chapter >> Page >
Create a LabVIEW VI to experiment with ring modulation (also called amplitude modulation, or AM), and develop a LabVIEW VI to shift the pitch of a speech signal using the single-sideband modulation technique.
This module refers to LabVIEW, a software development environment that features a graphical programming language. Please see the LabVIEW QuickStart Guide module for tutorials and documentation that will help you:
•Apply LabVIEW to Audio Signal Processing
•Get started with LabVIEW
•Obtain a fully-functional evaluation edition of LabVIEW

Overview

Ring modulation (AM) is an audio special effect that produces two frequency-shifted replicas of the spectrum of a source signal, with one replica shifted to higher frequency and the other replica to a lower frequency. Single-sideband AM (SSB-AM) provides a way to shift the source signal's spectrum higher or lower but without the additional replica. SSB-AM provides one way toimplement a pitch shifter , an audio special effect that shifts the frequency of speech, singing, or a musical instrument to a higher or lower frequency.

In this project, use LabVIEW to implement several types of ring modulators and a pitch shifter.

Prerequisite modules

If you have not done so already, please study the prerequisite modules AM Mathematics and Pitch Shifting . If you are relatively new to LabVIEW, consider taking the course LabVIEW Techniques for Audio Signal Processing which provides the foundation you need to complete this mini-project activity, including working with arrays, creating subVIs, playing an array to the soundcard, and saving an array as a .wav sound file.

Deliverables

  • All LabVIEW code that you develop (block diagrams and front panels)
  • All generated sounds in .wav format
  • Any plots or diagrams requested
  • Summary write-up of your results

Part 1: multiple modulators

Consider an original signal x ( t ) , which is a sinusoid of frequency f 0 . The original signal is modulated by a cosine function of frequency f 0 / 2 to produce x 1 ( t ) , which is in turn modulated by a cosine function of frequency f 0 / 5 to produce x 2 ( t ) , which is in turn modulated by a cosine function of frequency f 0 / 9 to produce x 3 ( t ) . Sketch the frequency-domain version of the four signals, i.e., sketch X ( f ) , X 1 ( f ) , X 2 ( f ) , and X 3 ( f ) .

Create a LabVIEW implementation of the above arrangement and plot the spectrum of each of the four signals. Compare your LabVIEW results to your prediction.

Part 2: multiple modulators with soundfile input

Create a LabVIEW implementation of the multiple modulation scheme of Part 1 that can process a .wav audio file as the input signal. Use controls for the three modulators that will allow you to easilychange their modulation frequencies. Experiment with various choices of modulation frequencies to make an interesting effect. Create two .wav files using different parameter choices.

Part 3: pitch shifter

Implement the pitch shifting algorithm based on the single-sideband AM technique discussed in Pitch Shifter with Single-Sideband AM . Use a design similar to that of "am_demo3.vi" provided at the bottom of the page of AM Mathematics which accepts a .wav file as input and plays the sound. The sound clip should be relatively short (on the order of several seconds). For this part of the project, do not implement the pre-filter; you will do this in Part 4.

Evaluate the quality of your pitch shifter by presenting some written discussion and suitable spectrogram plots. Especially indicate whether you can find audible and visual evidence of aliasing.

The fast Hilbert transform built-in subVI is available in the "Signal Processing | Transforms" pallet.

Part 4: pitch shifter with anti-aliasing filter

Modify your pitch shifter to include a bandpass filter. State how you will compute the bandpass filter's upper and lower corner frequencies, given that you want to preserve as much of the original signal's bandwidth as possible.

Evaluate the quality of your modified pitch shifter by presenting some written discussion and suitable spectral plots. Compare your results with those you obtained in Part 3.

A variety of digital filters are available in the "Signal Processing | Filters" pallet.

Optional part 5: real-time processor

Choose one of the previous LabVIEW implementations and make it work in real time with a signal input (microphone) and interactive front-panel controls.

Evaluate the interrupt-driven approach using an event structure (see "am_demo1.vi" described in AM Mathematics , as well as the polled approach used by mic_in_speaker_out.vi ). Use whichever technique you prefer.

Submit your finished LabVIEW implementation as a distinct .zip file.

Questions & Answers

what is mutation
Janga Reply
what is a cell
Sifune Reply
how is urine form
Sifune
what is antagonism?
mahase Reply
classification of plants, gymnosperm features.
Linsy Reply
what is the features of gymnosperm
Linsy
how many types of solid did we have
Samuel Reply
what is an ionic bond
Samuel
What is Atoms
Daprince Reply
what is fallopian tube
Merolyn
what is bladder
Merolyn
what's bulbourethral gland
Eduek Reply
urine is formed in the nephron of the renal medulla in the kidney. It starts from filtration, then selective reabsorption and finally secretion
onuoha Reply
State the evolution relation and relevance between endoplasmic reticulum and cytoskeleton as it relates to cell.
Jeremiah
what is heart
Konadu Reply
how is urine formed in human
Konadu
how is urine formed in human
Rahma
what is the diference between a cavity and a canal
Pelagie Reply
what is the causative agent of malaria
Diamond
malaria is caused by an insect called mosquito.
Naomi
Malaria is cause by female anopheles mosquito
Isaac
Malaria is caused by plasmodium Female anopheles mosquitoe is d carrier
Olalekan
a canal is more needed in a root but a cavity is a bad effect
Commander
what are pathogens
Don Reply
In biology, a pathogen (Greek: πάθος pathos "suffering", "passion" and -γενής -genēs "producer of") in the oldest and broadest sense, is anything that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ. The term pathogen came into use in the 1880s.[1][2
Zainab
A virus
Commander
Definition of respiration
Muhsin Reply
respiration is the process in which we breath in oxygen and breath out carbon dioxide
Achor
how are lungs work
Commander
where does digestion begins
Achiri Reply
in the mouth
EZEKIEL
what are the functions of follicle stimulating harmones?
Rashima Reply
stimulates the follicle to release the mature ovum into the oviduct
Davonte
what are the functions of Endocrine and pituitary gland
Chinaza
endocrine secrete hormone and regulate body process
Achor
while pituitary gland is an example of endocrine system and it's found in the Brain
Achor
what's biology?
Egbodo Reply
Biology is the study of living organisms, divided into many specialized field that cover their morphology, physiology,anatomy, behaviour,origin and distribution.
Lisah
biology is the study of life.
Alfreda
Biology is the study of how living organisms live and survive in a specific environment
Sifune
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Musical signal processing with labview -- modulation synthesis. OpenStax CNX. Nov 07, 2007 Download for free at http://cnx.org/content/col10483/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Musical signal processing with labview -- modulation synthesis' conversation and receive update notifications?

Ask