<< Chapter < Page Chapter >> Page >
Este módulo contiene la teoría correspondiente al método de Ortogonalización Gram-Schmidt aplicado para el proceso de la comunicación digital. Se explicarán los pasos necesarios para generar las bases ortogonales dados ciertos parámetros de la señal. Finalmente, teniendo las bases calculadas, se explicará el procedimiento para hallar la constelación correspondiente.

ORTOGONALIZACIÓN GRAM-SCHMIDT Y TEORÍA BÁSICA DE LAS CONSTELACIONES

González C. Y. Venuska

Mezoa R. Mariangela

Resumen

Este módulo contiene la teoría correspondiente al método de Ortogonalización Gram-Schmidt aplicado para el proceso de la comunicación digital. Se explicarán los pasos necesarios para generar las bases ortogonales dados ciertos parámetros de la señal. Finalmente, teniendo las bases calculadas, se explicará el procedimiento para hallar la constelación correspondiente.

En matemáticas, el concepto de Ortogonalidad está referido al de Perpendicularidad . Se dice que dos vectores pertenecientes a cierto espacio vectorial (V) son ortogonales si se cumple la condición de que el producto escalar de ellos da cero , es decir:

Sean : x V y V Si : x , y = x y = 0 Entonces : x y alignl { stack { size 12{ ital "Sean":} {} #size 12{x in V} {} # size 12{y in V} {} #{} # size 12{ ital "Si":} {} #size 12{ langle x,y rangle =x cdot y=0} {} # {} #size 12{ ital "Entonces":} {} # size 12{x ortho y} {}} } {}

A partir de un conjunto de vectores linealmente independientes se puede construir un nuevo conjunto de vectores ortonormales (Que cumplan con las condiciones de ortogonalidad y norma vectorial). Esto se conoce como el método de Ortogonalización Gram-Schmidt (G-S). Pero, ¿cómo aplicamos este concepto para un sistema de comunicación digital?

Ortogonalización gram-schmidt

Supongamos que se tiene una señal Si(t) que representa a un símbolo m i . Se estima que esta señal pase por el receptor que está encargado de obtener cada símbolo de la misma. Sin embargo, es evidente que al pasar por el canal, la señal se contaminará debido a la existencia de ruido en el sistema. En una condición ideal, el resultado sería el siguiente:

Al introducir ruido (AWGN) en el sistema, quedaría como sigue:

{}

Sistema de recepción con introducción de ruido AWGN.

La segunda situación ocasiona que a la salida del receptor no se obtiene el símbolo m i como tal, más bien se obtiene un estimado del símbolo original.

Es en este punto en donde entra el concepto de ortogonalización G-S: La señal Si(t) puede expresarse en función de un conjunto finito de bases (o vectores) ortonormales ( U ), de forma tal que cada forma de onda estaría relacionada con un coeficiente que llamaremos s (Una señal de energía). Matemáticamente tendríamos esto:

Si ( t ) = i = 1 n s ij . U j ( t ) size 12{ ital "Si" \( t \) = Sum cSub { size 8{i=1} } cSup { size 8{n} } {s rSub { size 8{ ital "ij"} } "." U rSub { size 8{j} } \( t \) } } {}

Es decir, a cada símbolo m i se le asocia una forma de onda s. Si desarrollamos la fórmula anterior, para todos los símbolos posibles , tendríamos un sistema de ecuaciones como sigue:

s 1 ( t ) = s 11 . U 1 ( t ) + s 12 . U 2 ( t ) + s 13 . U 3 ( t ) + . . . + s 1n . U n ( t ) s 2 ( t ) = s 21 . U 1 ( t ) + s 22 . U 2 ( t ) + s 23 . U 3 ( t ) + . . . + s 2n . U n ( t ) s 3 ( t ) = s 31 . U 1 ( t ) + s 32 . U 2 ( t ) + s 33 . U 3 ( t ) + . . . + s 3n . U n ( t ) s m ( t ) = s m1 . U 1 ( t ) + s m2 . U 2 ( t ) + s m3 . U 3 ( t ) + . . . + s mn . U n ( t ) alignl { stack { size 12{s rSub { size 8{1} } \( t \) =s rSub { size 8{"11"} } "." U rSub { size 8{1} } \( t \) +s rSub { size 8{"12"} } "." U rSub { size 8{2} } \( t \) +s rSub { size 8{"13"} } "." U rSub { size 8{3} } \( t \) + "." "." "." +s rSub { size 8{1n} } "." U rSub { size 8{n} } \( t \) } {} #s rSub { size 8{2} } \( t \) =s rSub { size 8{"21"} } "." U rSub { size 8{1} } \( t \) +s rSub { size 8{"22"} } "." U rSub { size 8{2} } \( t \) +s rSub { size 8{"23"} } "." U rSub { size 8{3} } \( t \) + "." "." "." +s rSub { size 8{2n} } "." U rSub { size 8{n} } \( t \) {} # s rSub { size 8{3} } \( t \) =s rSub { size 8{"31"} } "." U rSub { size 8{1} } \( t \) +s rSub { size 8{"32"} } "." U rSub { size 8{2} } \( t \) +s rSub { size 8{"33"} } "." U rSub { size 8{3} } \( t \) + "." "." "." +s rSub { size 8{3n} } "." U rSub { size 8{n} } \( t \) {} #dotsvert {} # s rSub { size 8{m} } \( t \) =s rSub { size 8{m1} } "." U rSub { size 8{1} } \( t \) +s rSub { size 8{m2} } "." U rSub { size 8{2} } \( t \) +s rSub { size 8{m3} } "." U rSub { size 8{3} } \( t \) + "." "." "." +s rSub { size 8{ ital "mn"} } "." U rSub { size 8{n} } \( t \) {}} } {}

El objetivo en el segundo sistema mostrado en la Figura 1 es el de obtener el estimado que más se aproxime al valor real. Esto se hace minimizando la energía de la señal de error entre el símbolo original y el estimado:

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Laboratorio digital interactivo. OpenStax CNX. Feb 09, 2011 Download for free at http://cnx.org/content/col11274/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Laboratorio digital interactivo' conversation and receive update notifications?

Ask