<< Chapter < Page Chapter >> Page >

Let’s stop to think about why this is true at 1 atm pressure. To do so, we need to remember how we observed the boiling point. We applied a pressure using a piston which trapped a liquid in a cylinder. When we elevated the temperature, we observed a phase transition at one temperature which we called the boiling point. At that point, the vapor became stable. For this to be true, the pressure created by the vapor (which is of course the vapor pressure) must at least be equal to the pressure applied externally to the piston. If the vapor pressure is less than the applied pressure, the vapor cannot resist the applied pressure, the piston moves in, and all of the vapor condenses into the liquid. Therefore, for the liquid to boil, the temperature must be high enough for the vapor pressure to equal the applied pressure. Only at this temperature or above will the rate of evaporation be great enough to offset the rate of condensation created by the externally applied pressure.

To find the boiling point temperature at 1 atm pressure, we need to find the temperature at which the vapor pressure is 1 atm. To do so, we find the point on the graph where the vapor pressure is 1 atm and read off the corresponding temperature, which must be the boiling point. Of course, this will work at any given pressure. We just read off of Figure 1 the temperature at which the vapor pressure equals the applied pressure, and that will be the temperature at which the liquid boils at that pressure. This means that Figure. 1 gives us both the vapor pressure of water as a function of the temperature and the boiling point temperature of water as a function of the applied pressure. They are the same graph!

Remember that in the experiment, at the boiling point we observed that both liquid and gas are at equilibrium with one another. Both phases are present at the boiling point. This is true at every combination of applied pressure and boiling point temperature. Therefore, for every combination of temperature and pressure along the curve on the graph in Figure 1, we observe liquid-gas equilibrium.

What happens at combinations of temperature and pressure which are not on the line drawn in Figure 1? To find out, let’s run the experiment. We first start at any temperature-pressure combination on the curve and elevate the temperature while holding the applied pressure constant. In Figure 1, this moves us to the right of the curve. We observe that all of the liquid vaporizes, and there is only gas in the container. What happened to the equilibrium? At higher temperature, the vapor pressure of the liquid rises, but if the applied pressure does not also increase, then the vapor pressure will be greater than the applied pressure. The vapor pushes back the piston and the liquid evaporates. We must therefore not be at equilibrium anymore. For all temperature and pressure combinations to the right of the curve, only vapor exists.

Now let’s start at a point on the curve and lower the temperature while holding the pressure constant, leaving us to the left of the curve. We observe that all of the gas condenses into the liquid. This is because the vapor pressure is below the applied pressure, and the piston moves in against the gas until it all condenses into the liquid. For all temperature and pressure combinations to the left of the curve, only liquid exists.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2013. OpenStax CNX. Oct 07, 2013 Download for free at http://legacy.cnx.org/content/col11579/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2013' conversation and receive update notifications?

Ask