<< Chapter < Page Chapter >> Page >
Method for representing DT signals as superpositions of complex geometric (exponential) functions.

Lecture #15:

THE BILATERAL Z-TRANSFORM

Motivation: Method for representing DT signals as superpositions of complex geometric (exponential) functions

Outline:

  • Review of last lecture
  • The bilateral Z-transform

– Definition

– Properties

  • Inventory of transform pairs
  • Conclusion

Review of last lecture

Solve linear difference equation for a causal exponential input

k = 0 K a k y [ n + k ] = l = 0 L b l x [ n + l ] for x [ n ] = Xz n u [ n ] size 12{ Sum cSub { size 8{k=0} } cSup { size 8{K} } {a rSub { size 8{k} } y \[ n+k \] ={}} Sum cSub { size 8{l=0} } cSup { size 8{L} } {b rSub { size 8{l} } x \[ n+l \]} matrix { {} # {}} ital "for" matrix { {} # {}} x \[ n \] = ital "Xz" rSup { size 8{n} } u \[ n \]} {}

Solve homogeneous equation for n>0

k = 0 K a k y h [ n + k ] = 0 by assu min g y h [ n ] = n size 12{ Sum cSub { size 8{k=0} } cSup { size 8{K} } {a rSub { size 8{k} } y rSub { size 8{h} } \[ n+k \] ={}} 0 matrix {{} # {} } ital "by" matrix {{} # {} } ital "assu""min"g matrix {{} # {} } y rSub { size 8{h} } \[ n \]=Aλ rSup { size 8{n} } } {}

Solve characteristic polynomial for λ.

k = 0 K a k λ n + k = 0 size 12{ Sum cSub { size 8{k=0} } cSup { size 8{K} } {a rSub { size 8{k} } λ rSup { size 8{n+k} } ={}} 0} {}

Solve for a particular solution for n>0

k = 0 K a k y p [ n + k ] = l = 0 L b l x [ n + l ] for x [ n ] = Xz n u [ n ] size 12{ Sum cSub { size 8{k=0} } cSup { size 8{K} } {a rSub { size 8{k} } y rSub { size 8{p} } \[ n+k \] ={}} Sum cSub { size 8{l=0} } cSup { size 8{L} } {b rSub { size 8{l} } x \[ n+l \]} matrix { {} # {}} ital "for" matrix { {} # {}} x \[ n \] = ital "Xz" rSup { size 8{n} } u \[ n \]} {}

Assuming y p [ n ] = Yz n size 12{y rSub { size 8{p} } \[ n \] =" Yz" rSup { size 8{n} } } {} and solving for Y yields

Y = H ~ ( z ) X = l = 0 L b l z l k = 0 K a k z k X size 12{Y= {H} cSup { size 8{ "~" } } \( z \) X= { { Sum cSub { size 8{l=0} } cSup { size 8{L} } {b rSub { size 8{l} } } z rSup { size 8{l} } } over { Sum cSub { size 8{k=0} } cSup { size 8{K} } {a rSub { size 8{k} } } z rSup { size 8{k} } } } X} {}

Logic for an analysis method for DT LTI systems

  • H ~ ( z ) size 12{ {H} cSup { size 8{ "~" } } \( z \) } {} characterizes system  compute H ~ ( z ) size 12{ {H} cSup { size 8{ "~" } } \( z \) } {} efficiently.
  • In steady state, response to Xz n size 12{"Xz" rSup { size 8{n} } } {} is H ~ ( z ) z n size 12{ {H} cSup { size 8{ "~" } } \( z \) z rSup { size 8{n} } } {} .
  • Represent arbitrary x[n] as superpositions of Xz n size 12{"Xz" rSup { size 8{n} } } {} on z.
  • Compute response y[n] as superpositions of H ~ ( z ) Xz n size 12{ {H} cSup { size 8{ "~" } } \( z \) "Xz" rSup { size 8{n} } } {} on z.

I. THE BILATERAL Z-TRANSFORM

1/ Definition

The bilateral Z-transform is defined by the analysis formula

X ~ ( z ) = n = x [ n ] z n size 12{ {X} cSup { size 8{ "~" } } \( z \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {x \[ n \] z rSup { size 8{ - n} } } } {}

X ~ ( z ) size 12{ {X} cSup { size 8{ "~" } } \( z \) } {} is defined for a region in z — called the region of convergence — for which the sum exists.

The inverse transform is defined by the synthesis formula

x [ n ] = 1 2πj C X ~ ( z ) z n 1 dz size 12{x \[ n \] = { {1} over {2πj} } Int rSub { size 8{C} } { {X} cSup { size 8{ "~" } } \( z \) } z rSup { size 8{n - 1} } ital "dz"} {}

Since z is a complex quantity, X ~ ( z ) size 12{ {X} cSup { size 8{ "~" } } \( z \) } {} is a complex function of a complex variable. Hence, the synthesis formula involves integration in the complex z domain. We shall not perform this integration in this subject. The synthesis formula will be used only to prove theorems and not to compute time functions directly.

a/ Approach

An inventory of time functions and their Z-transforms will be developed by

  • Using the Z-transform properties,
  • Determining the Z-transforms of elementary DT time functions,
  • Combining the results of the above two items.

b/ Notation

We shall use two useful notations — Z{x[n]} signifies the Z-transform of x[n]and a Z-transform pair is indicated by

x [ n ] Z X ~ ( z ) size 12{x \[ n \] { dlrarrow } cSup { size 8{Z} } {X} cSup { size 8{ "~" } } \( z \) } {}

2/ Properties

a/ Linearity

ax 1 [ n ] + bx 2 [ n ] Z a X ~ 1 ( z ) + b X ~ 2 ( z ) size 12{ ital "ax" rSub { size 8{1} } \[ n \] + ital "bx" rSub { size 8{2} } \[ n \]{ dlrarrow } cSup { size 8{Z} } a {X} cSup { size 8{ "~" } } rSub { size 8{1} } \( z \) +b {X} cSup { size 8{ "~" } } rSub { size 8{2} } \( z \) } {}

The proof follows from the definition of the Z-transform as a sum.

X ~ ( z ) = n = ( ax 1 [ n ] + bx 2 [ n ] ) z n X ~ ( z ) = a n = x 1 [ n ] z n + b n = x 2 [ n ] z n X ~ ( z ) = a X 1 ~ ( z ) + b X 2 ~ ( z ) alignl { stack { size 12{ {X} cSup { size 8{ "~" } } \( z \) = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } { \( ital "ax" rSub { size 8{1} } \[ n \]+ ital "bx" rSub { size 8{2} } \[ n \] \) z rSup { size 8{ - n} } } } {} #{X} cSup { size 8{ "~" } } \( z \) =a Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {x rSub { size 8{1} } \[ n \] z rSup { size 8{ - n} } } +b Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {x rSub { size 8{2} } \[ n \] z rSup { size 8{ - n} } } {} #{X} cSup { size 8{ "~" } } \( z \) =a {X rSub { size 8{1} } } cSup { size 8{ "~" } } \( z \) +b {X rSub { size 8{2} } } cSup { size 8{ "~" } } \( z \) {} } } {} {}

b/ Delay by k

x [ n k ] Z z k X ~ ( z ) size 12{x \[ n - k \] { dlrarrow } cSup { size 8{Z} } z rSup { size 8{ - k} } {X} cSup { size 8{ "~" } } \( z \) } {}

This result can be seen using the synthesis formula,

x [ n k ] = 1 2πj X ~ ( z ) z n k 1 dz x [ n k ] = 1 2πj z k X ~ ( z ) z n 1 dz alignl { stack { size 12{x \[ n - k \]= { {1} over {2πj} } Int { {X} cSup { size 8{ "~" } } \( z \) z rSup { size 8{n - k - 1} } ital "dz"} } {} # x \[ n - k \]= { {1} over {2πj} } Int {z rSup { size 8{ - k} } {X} cSup { size 8{ "~" } } \( z \) z rSup { size 8{n - 1} } ital "dz"} {} } } {}

c/ Multiply by n

nx [ n ] Z z d X ~ ( x ) dz size 12{ ital "nx" \[ n \] { dlrarrow } cSup { size 8{Z} } - z { {d {X} cSup { size 8{ "~" } } \( x \) } over { ital "dz"} } } {}

This result can be seen using the analysis formula.

d X ~ ( z ) dz = n = nx [ n ] z n 1 z d X ~ ( z ) dz = n = nx [ n ] z n alignl { stack { size 12{ { {d {X} cSup { size 8{ "~" } } \( z \) } over { ital "dz"} } = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } { - ital "nx" \[ n \]z rSup { size 8{ - n - 1} } } } {} # - z { {d {X} cSup { size 8{ "~" } } \( z \) } over { ital "dz"} } = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } { ital "nx" \[ n \]z rSup { size 8{ - n} } } {} } } {}

Most proofs of Z-transform properties are simple. Some of the important properties are summarized here.

R, R1, and R2 are the ROCs of X ~ ( z ) size 12{ {X} cSup { size 8{ "~" } } \( z \) } {} , X 1 ~ ( z ) size 12{ {X rSub { size 8{1} } } cSup { size 8{ "~" } } \( z \) } {} , and X 2 ~ ( z ) size 12{ {X rSub { size 8{2} } } cSup { size 8{ "~" } } \( z \) } {} , respectively. * Exceptions may occur at z = 0 and z = ∞.

II. Z-TRANSFORMS OF SIMPLE TIME FUNCTIONS

1/ Unit sample function

δ [ n ] = { 1 if n = 0 0 otherwise size 12{δ \[ n \] = left lbrace matrix {1 matrix { {} # {}} ital "if" matrix { {} # {}} n=0 {} ## 0 matrix {{} # {} } ital "otherwise"{}} right none } {}

The Z-transform of the unit sample is

Z { δ [ n ] } = n = δ [ n ] z n = z 0 = 1 size 12{Z lbrace δ \[ n \] rbrace = Sum cSub { size 8{n= - infinity } } cSup { size 8{ infinity } } {δ \[ n \]z rSup { size 8{ - n} } =z rSup { size 8{0} } =1} } {}

for all values of z, i.e., the ROC is the entire z plane.

2/ Unit step function

u [ n ] = { 1 for n 0 0 for n < 0 size 12{u \[ n \] = left lbrace matrix {1 matrix { {} # {}} ital "for" matrix { {} # {}} n>= 0 {} ## 0 matrix {{} # {} } ital "for" matrix {{} # {} } n<0{} } right none } {}

The unit step and unit sample functions are simply related.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10803/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask