<< Chapter < Page Chapter >> Page >

Wind power

Wind is the result of the sun's uneven heating of the atmosphere. Warm air expands and rises, and cool air contracts and sinks. This movement of the air is called wind. Wind has been used as an energy source for millennia. It has been used to pump water, to power ships, and to mill grains. Areas with constant and strong winds can be used by wind turbines to generate electricity. In the United States, the state of California has about 20,000 wind turbines , and produces the most wind-generated electricity. Wind energy does not produce air pollution, can be virtually limitless, and is relatively inexpensive to produce. There is an initial cost of manufacturing the wind turbine and the costs associated with upkeep and repairs, but the wind itself is free.

The major drawbacks of wind-powered generators are they require lots of open land and a fairly constant wind supply. Less than 15% of the United States is suitable for generating wind energy.

Windmills are also noisy, and some people consider them aesthetically unappealing and label them as visual pollution. Migrating birds and insects can become entangled and killed by the turning blades. However, the land used for windmill farms can be simultaneously used for other purposes such as ranching, farming and recreation.

Biomass energy

Biomass energy is the oldest energy source used by humans. Biomass is the organic matter that composes the tissues of plants and animals. Until the Industrial Revolution prompted a shift to fossil fuels in the mid 18th century, it was the world's dominant fuel source. Biomass can be burned for heating and cooking, and even generating electricity. The most common source of biomass energy is from the burning of wood, but energy can also be generated by burning animal manure (dung), herbaceous plant material (non-wood), peat (partially decomposed plant and animal tissues), or converted biomass such as charcoal (wood that has been partially burned to produce a coal-like substance). Biomass can also be converted into a liquid biofuel such as ethanol or methanol. Currently, about 15 percent of the world's energy comes from biomass.

Biomass is a potentially renewable energy source. Unfortunately, trees that are cut for firewood are frequently not replanted. In order to be used sustainably, one tree must be planted for every one cut down.

Biomass is most frequently used as a fuel source in developing nations, but with the decline of fossil fuel availability and the increase in fossil fuel prices, biomass is increasingly being used as a fuel source in developed nations. One example of biomass energy in developed nations is the burning of municipal solid waste. In the United States, several plants have been constructed to burn urban biomass waste and use the energy to generate electricity.

The use of biomass as a fuel source has serious environmental effects. When harvested trees are not replanted, soil erosion can occur. The loss of photosynthetic activity results in increased amounts of carbon dioxide in the atmosphere and can contribute to global warming. The burning of biomass also produces carbon dioxide and deprives the soil of nutrients it normally would have received from the decomposition of the organic matter. Burning releases particulate matter (such as ash) into the air which can cause respiratory health problems.

Geothermal energy

Geothermal energy uses heat from the earth's internal geologic processes in order to produce electricity or provide heating. One source of geothermal energy is steam. Groundwater percolates down though cracks in the subsurface rocks until it reaches rocks heated by underlying magma, and the heat converts the water to steam. Sometimes this steam makes its way back to the surface in the form of a geyser or hot spring. Wells can be dug to tap the steam reservoir and bring it to the surface, to drive generating turbines and produce electricity. Hot water can be circulated to heat buildings. Regions near tectonic plate boundaries have the best potential for geothermal activity.

The western portion of the United States is most conducive for geothermal energy sources, and over half of the electricity used by the city of San Francisco comes from the Geysers, a natural geothermal field in Northern California. California produces about 50 percent of the world's electricity that comes from geothermal sources.

Entire cities in Iceland, which is located in a volcanically active region near a mid-ocean ridge, are heated by geothermal energy. The Rift Valley region of East Africa also has geothermal power plants. Geothermal energy may not always be renewable in a particular region if the steam is withdrawn at a rate faster than it can be replenished, or if the heating source cools off. The energy produced by the Geysers region of California is already in decline because the heavy use is causing the underground heat source to cool.

Geothermal energy recovery can be less environmentally invasive than engaging in recovery methods for non-renewable energy sources. Although it is relatively environmentally friendly, it is not practical for all situations. Only limited geographic regions are capable of producing geothermal energy that is economically viable. Therefore, it will probably never become a major source of energy. The cost and energy requirements for tapping and transporting steam and hot water are high. Hydrogen sulfide, an toxic air pollutant that smells like rotten eggs, is also often associated with geothermal activity.

Questions & Answers

what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
how did I we'll learn this
Noor Reply
f(x)= 2|x+5| find f(-6)
Prince Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Ap environmental science. OpenStax CNX. Sep 25, 2009 Download for free at http://cnx.org/content/col10548/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ap environmental science' conversation and receive update notifications?