<< Chapter < Page Chapter >> Page >

Second, let’s think about the malleability and ductility of solid metals. These properties mean that the bonding of the metal atoms together is not affected much when the atoms are rearranged. It may be difficult to see on the macroscale, but bending a piece of metal or stretching into a thin wire requires major movement of atoms. And since bending the metal does not break it into pieces, the adjacent atoms must remain bonded together despite these large atomic movements. Apparently, the bonding electrons are not affected by this rearrangement of atoms. This is completely consistent with the idea we just discussed, that the electrons are free to move about many nuclei and are not just localized between two adjacent nuclei. When the atoms are rearranged by bending or stretching, the electrons are free to immediately rearrange as well, and the bonding is preserved.

Our picture of a metal, based on these conclusions, is that the nuclei of the metal atoms are arranged in an array in the solid metal. The non-valence electrons in each metal, which are strongly attracted to each nucleus, remain localized near their own atoms. The valence electrons, though, are free to move about the positive centers of the nuclei and core electrons. Once you have this image in your head, you can see why chemists refer to this as the “electron sea model” of a metal. You should also be able to see how the properties of metals lead us to this electron sea image.

What about the shininess of metals? To understand this, we need to know what causes light to shine off of a surface. From our previous studies, we learned that light (electromagnetic energy) can be absorbed by atoms causing electrons to move from a lower energy state to a higher one. Similarly, light can be emitted from an atom with an electron moving from a higher energy state to a lower one. According to Einstein’s formula, the frequency of the light ν absorbed or emitted, when multiplied by a constant h, must match the energy difference ∆E between the two electron states: ∆E=hν.

Because there are so many electrons in the electron sea which are involved in the bonding of the metal atoms together, there are many, many electron energy levels, a huge number in fact. So there are a correspondingly huge number of energy differences between these levels. This means that, when visible light hits the surface of a metal, the metal can easily absorb and reemit light of that frequency, reflecting the light and making the surface appear to shine.

Overall, we can see that the “electron sea” model of bonding of metal atoms together accounts for the properties of metals we have observed. It is worth thinking about how very different this model of bonding is from the covalent model of bonding in non-metals. We’ll come back to this contrast in the last section of this study.

Observation 2: properties of salts

There are many types of compounds formed by combining metals atoms and non-metal atoms. To simplify our discussion, we are going to focus on one specific type of compound called a salt. The common use of the term “salt” refers to one specific compound Sodium Chloride (NaCl), which is also a great example of the more general idea of a salt, so we’ll start with it and then consider some more examples.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concept development studies in chemistry 2012. OpenStax CNX. Aug 16, 2012 Download for free at http://legacy.cnx.org/content/col11444/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concept development studies in chemistry 2012' conversation and receive update notifications?

Ask