
Fun with Java: Sprite Animation, Part 6

In his continuing series on sprite animation, Baldwin explains the behavior of each of the

methods of his SpriteManager class. This includes the following features: finding an empty

location for each new sprite, updating sprite positions, drawing the new scene during each

animation cycle, and managing collisions between sprites.

Published: November 11, 2001

By Richard G. Baldwin

Java Programming, Lecture Notes # 1460

 Preface

 Preview

 Discussion and Sample Programs

 Summary

 What's Next

 Complete Program Listing

Preface

If you are one of those orderly people who start reading a book at the beginning and reads

through to the end, you are probably wondering why I keep repeating this long introduction. The

truth is that this introduction isn't meant for you. Rather, it is meant for those people who start

reading in the middle.

That said, this is one of the lessons in a miniseries that will concentrate on having fun while

programming in Java.

This miniseries will include a variety of Java programming topics that fall in the category of fun

programming. This particular lesson is the sixth in of a group of lessons that will teach you how

to write animation programs in Java. The first lesson in the group was entitled Fun with Java:

Sprite Animation, Part 1. (Here is your opportunity to go back and start reading at the

beginning.) The previous lesson was entitled Fun with Java: Sprite Animation, Part 5.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

Supplementary material

Java1450.htm
Java1450.htm
Java1458.htm

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at Baldwin's Java

Programming Tutorials.

Preview

Animation programming

This is one of a group of lessons that will teach you how to write animation programs in

Java. These lessons will teach you how to write sprite animation, frame animation, and a

combination of the two.

Spherical sea creatures

The first program, being discussed in this lesson, will show you how to use sprite animation to

cause a group of colored spherical sea creatures to swim around in a fish tank. A screen shot of

the output produced by this program is shown in Figure 1.

Figure 1. Animated spherical sea creatures in a fish tank.

The ability to change color

Many sea creatures have the ability to change their color in very impressive ways. The second

program that I will discuss in subsequent lessons will simulate that process using a combination

of sprite and frame animation.

Sea worms

The third program, also to be discussed in a subsequent lesson, will use a combination of sprite

animation, frame animation, and some other techniques to cause a group of multi-colored sea

worms to slither around in the fish tank. In addition to slithering, the sea worms will also change

the color of different parts of their body, much like real sea creatures.

A screen shot of the output from the third program is shown in Figure 2.

http://softwaredev.earthweb.com/java
http://www.geocities.com/Athens/7077/scoop/onjava.html
http://www.geocities.com/Athens/7077/scoop/onjava.html

Figure 2. Animated sea worms in a fish tank.

Figure 3 shows the GIF image files that you will need to run these three programs.

Figure 3. GIF image files that you will need.

Getting the required GIF files

You should be able to capture the images by right-clicking on them individually, and then saving

them into files on your local disk. Having done that, you will need to rename the files to match

the names that are hard-coded into the programs.

Review of previous lesson

In the previous lesson, I completed my discussion of the controlling class for this animation

program.

The update method

I showed you how to override the update method of the Component class to improve the

animation quality of the program over what would normally be achieved using the default

version of the update method.

In the process, I showed you how to eliminate the flashing that often accompanies efforts to use

the default version of the update method for animation purposes. This flashing is caused by the

fact that the default version of update draws an empty component (often white) at the beginning

of each redraw cycle.

Offscreen drawing context

I also showed you how to get and use an offscreen drawing context to accomplish double

buffering in the drawing process. The use of double buffering makes it impossible for the user to

see the scene as it is being drawn because the scene is first drawn offscreen and then transferred

as a whole to the screen context. Depending on the drawing speed, this can also produce a more

pleasing result.

I also provided a very brief discussion of the utility class named BackgroundImage.

Preview of this lesson

There are two more classes to cover before my discussion of this animation program is

complete: SpriteManager and Sprite.

In this lesson, I will explain the behavior of each of the methods of the SpriteManager

class. This will include the following features:

 Finding an empty space for each new sprite

 Updating sprite positions

 Drawing the new scene during each animation cycle

 Managing collisions between sprites

Discussion and Sample Program

This program is so long that several lessons will be required to discuss it fully. Rather than to

make you wait until I complete all of those lessons to get your hands on the program, I have

provided a copy of the entire program in Listing 11 near the end of the lesson. That way, you

can copy it into a source file on your local disk, compile it, run it, and start seeing the results.

The SpriteManager class

As the name implies, an object of the SpriteManager class can be used to manage a collection

of sprites. Before I get into the details, here is a preview of some of the attributes of the

SpriteManager class.

SpriteManager constructor

The constructor for the SpriteManager class requires an incoming parameter of type

BackgroundImage. The BackgroundImage class is a convenience class designed to facilitate

certain operations involving the background image displayed on the Frame. The code in various

methods of the SpriteManager class uses the BackgroundImage object to manage the

background image against which the animation process is played out. (You can view the

background image by scrolling back up to Figure 3.)

A collection of sprites in a Vector object

An object of the SpriteManager class stores references to a collection of sprites in an object of

type Vector. A public method named addSprite can be invoked to cause a new sprite to be

added to the collection.

Finding a parking place for a sprite

One of the public methods of the SpriteManager class is a method named

getEmptyPosition. This method attempts to identify a location within the Frame that does not

currently contain a sprite. This makes it possible to create a population of sprites without having

them initially occupying the same physical space.

Updating the sprite positions

Another public method of the SpriteManager class is a method named upDate (not to be

confused with the update method of the Component class). When this method is invoked, the

SpriteManager object causes all of the sprites in its collection to change their position according

to values stored in a motion vector owned by each sprite.

When the sprites change their positions, collisions can and do occur. Such collisions are handled

by the SpriteManager using private methods named testForCollision and bounceOffSprite.

Drawing the scene

Another public method of the SpriteManager class is named drawScene. When this method is

invoked, a new background image is drawn on the Frame. This has the effect of erasing all of

the sprites from the scene. The method then causes each of the sprites to be drawn in their

respective positions.

Discuss in fragments

As usual, I will discuss the program in fragments.

As shown in Listing 1, the SpriteManager class extends the Vector class. Hence, an object of

the SpriteManager class is a Collection object according to the Java Collections

Framework. (If you are unfamiliar with that framework, I have published several lessons on the

framework on my web site.)

class SpriteManager extends Vector{

 private BackgroundImage

 backgroundImage;

 public SpriteManager(

 BackgroundImage backgroundImage){

 this.backgroundImage =

 backgroundImage;

 }//end constructor

Listing 1

The background

The SpriteManager class starts off in a very mundane way. The constructor, shown in Listing

1, receives and saves a reference to an object of the BackgroundImage class.

Adding sprites

Continuing to keep things simple, the code in Listing 2 is used to add a new sprite to the

collection. This code simply provides a wrapper method with a descriptive name around the

standard add method of the Vector class.

 public void addSprite(Sprite

sprite){

 add(sprite);

 }//end addSprite()

Listing 2

There are overloaded versions of the add method in the Vector class. In keeping with the

stipulations of the Java Collections Framework, the add method used here appends the incoming

Sprite object's reference to the end of the collection of references stored in the Vector.

The getEmptyPosition method

The purpose of the method named getEmptyPosition is to try to find a rectangle the size of a

sprite in a location that is not already occupied by one of the sprites in the collection.

This method, as shown in Listing 3, is long and ugly, but not conceptually difficult. Therefore, I

will provide a brief summary but I won't discuss it in detail.

 public Point getEmptyPosition(

 Dimension spriteSize){

 Rectangle trialSpaceOccupied =

 new Rectangle(0, 0,

 spriteSize.width,

 spriteSize.height);

 Random rand =

 new Random(

 System.currentTimeMillis());

 boolean empty = false;

 int numTries = 0;

 // Search for an empty position

 while (!empty && numTries++ < 100){

 // Get a trial position

 trialSpaceOccupied.x =

 Math.abs(rand.nextInt() %

 backgroundImage.

 getSize().width);

 trialSpaceOccupied.y =

 Math.abs(rand.nextInt() %

 backgroundImage.

 getSize().height);

 // Iterate through existing

 // sprites, checking if position

 // is empty

 boolean collision = false;

 for(int cnt = 0;cnt < size();

 cnt++){

 Rectangle testSpaceOccupied =

 ((Sprite)elementAt(cnt)).

 getSpaceOccupied();

 if (trialSpaceOccupied.

 intersects(

 testSpaceOccupied)){

 collision = true;

 }//end if

 }//end for loop

 empty = !collision;

 }//end while loop

 return new Point(

 trialSpaceOccupied.x,

 trialSpaceOccupied.y);

 }//end getEmptyPosition()

Listing 3

Basically the method uses a for loop inside a while loop to search for a rectangular area not

already occupied by a sprite.

Check up to 100 locations

The while loop will iterate up to 100 times looking for an empty area. When it finds an empty

area, the while loop terminates and the method returns the location of that area to the calling

program. If the method fails to find an empty area in 100 tries, it gives up and returns a location

that is already occupied by another sprite.

Check random locations

Inside the while loop, the code uses a random number generator to specify a trial location. It

then uses a for loop, in conjunction with the intersects method of the Rectangle class, to test the

trial location against the locations occupied by all of the sprites in the collection.

An empty location

If the rectangular area at the trial location doesn't intersect a rectangular area occupied by any

existing sprite, that rectangular area and that location is deemed to be empty.

An occupied location

If the rectangular area at the trial location does intersect a rectangular area occupied by an

existing sprite, that location is discarded. In that case, another trial location area is specified

using the random number generator and the test is performed again.

Redraw and sleep

As I explained in an earlier lesson, once control enters the animation loop, the update method is

invoked on the SpriteManager object. When the update method returns, the code invokes the

repaint method on the Frame and the animation thread goes to sleep for a specified period of

time.

When the animation thread wakes up, the process is repeated.

(Be careful not to confuse this method named update with the method having the same name that

is defined in the Component class, and overridden in the controlling class for this program.)

The update method

The update method causes all of the sprites being managed by the SpriteManager object to

assume new positions based on the motion rules defined by the Sprite class.

The beginning of the update method is shown in Listing 4.

 public void update() {

 Sprite sprite;

 //Iterate through sprite list

 for (int cnt = 0;cnt < size();

 cnt++){

 sprite = (Sprite)elementAt(cnt);

 //Update a sprite's position

 sprite.updatePosition();

Listing 4

Once all of the sprites have assumed new positions, it is possible that some collisions among

sprites may have occurred. The update method tests for collisions by examining the location

information belonging to each of the Sprite objects being managed.

Managing collisions

If a collision has occurred, a method named bounceOffSprite is invoked to cause the two sprites

to behave in a manner similar to that, which occurs between two balls in a game of pool. (I will

discuss the bounceOffSprite method later.)

Iterate on all sprites

All of the executable code in the update method exists inside a for loop that iterates through all

of the sprites in the collection.

The code inside the for loop begins by selecting the next sprite in the collection and causing that

sprite to assume a new position by invoking the updatePosition method on the sprite. (We will

see exactly how a sprite moves in a subsequent lesson where I discuss the Sprite class in detail.)

Test for a collision

The code in the for loop then invokes a private method of the SpriteManager class named

testForCollision to determine if the sprite that just moved collided with any other sprite. (I will

discuss the testForCollision method shortly.)

This code is shown in Listing 5.

 int hitIndex =

 testForCollision(sprite)

Listing 5

Negative return value is OK

If a collision did not occur, the testForCollision method returns a negative value. This causes

another iteration of the for loop to test the next sprite in the collection for a collision.

Who hit me?

If a collision did occur, the testForCollision method returns either zero or a positive value. This

value is the index in the collection of the other party to the collision.

Bounce when collision occurs

In this case, the code shown in Listing 6 passes references to both parties in the collision to the

method named bounceOffSprite to cause the sprites to bounce off of one another. (You will see

how that is done shortly when I discuss the method named bounceOffSprite.)

 if (hitIndex >= 0){

 //a collision has occurred

 bounceOffSprite(cnt,hitIndex);

 }//end if

 }//end for loop

 }//end update

Listing 6

The testCollision method

The actual code that tests to determine if two sprites have collided is performed by a method

named testCollision, which is a method of the Sprite class. Breaking this code out into a

separate method makes it easier to customize that code to be appropriate for sprites of new

designs.

The testForCollision method

The method named testForCollision defined in the SpriteManager class invokes the

testCollision method to determine if two specific sprites have collided.

The testForCollision method, shown in Listing 7, receives a reference to a Sprite object as a

parameter. It uses a for loop to test that sprite against all of the sprites in the collection except

itself.

 private int testForCollision(

 Sprite testSprite){

 Sprite sprite;

 for (int cnt = 0;cnt < size();

 cnt++){

 sprite = (Sprite)elementAt(cnt);

 if (sprite == testSprite)

 //don't check self

 continue;

 //Invoke testCollision method

 // of Sprite class to perform

 // the actual test.

 if (testSprite.testCollision(

 sprite))

 //Return index of colliding

 // sprite

 return cnt;

 }//end for loop

 return -1;//No collision detected

 }//end testForCollision()

Listing 7

True for collision, false otherwise

During each iteration of the loop, it passes a reference to the sprite being tested and a reference

to one of the sprites in the collection to the testCollision method of the Sprite class. If that

method determines that a collision has occurred, it returns true. Otherwise, it returns false.

Terminate on collision

If the testCollision method returns true, the testForCollision method terminates, returning the

positive index of the sprite in the collection that collided with the sprite being tested.

If no collisions are detected, the testForCollision method returns -1.

Small incremental steps

Although it isn't apparent while watching the animation run, each sprite moves through the water

in small incremental steps. Each sprite takes one step in the horizontal direction and one step in

the vertical direction during each iteration of the animation loop in the run method of the

controlling class.

The motion vector

As you will see when I discuss the Sprite class in the next lesson, each Sprite object has an

instance variable of type Point named motionVector (the word vector here is used to indicate a

mathematical vector, and is not to be confused with the Java class named Vector).

Each motion vector contains a signed integer describing the incremental horizontal motion of the

sprite and a signed integer describing the incremental vertical motion of the sprite. Thus, the

contents of the Point object referred to by motionVector determine the speed and direction of

motion for the sprite. (We will also see that these two values can occasionally change on a

random basis causing a sprite to change its speed and direction of motion.)

The bounceOffSprite method

The method named bounceOffSprite shown in Listing 8 receives references to two Sprite

objects. This method is called by the SpriteManager object when two sprites are determined to

have collided.

Swap motion vectors

The concept is simple. If two sprites, (call them A and B), collide, they swap motion

vectors. This causes sprite B to assume the speed and direction previously exhibited by sprite A,

and causes sprite A to assume the speed and direction previously exhibited by sprite B.

Thus, the code shown in Listing 8 simply swaps the motion vectors between the two sprites

received as incoming parameters.

 private void bounceOffSprite(

 int oneHitIndex,

 int otherHitIndex){

 //Swap motion vectors for

 // bounce algorithm

 Sprite oneSprite =

 (Sprite)elementAt(oneHitIndex);

 Sprite otherSprite =

 (Sprite)elementAt(otherHitIndex);

 Point swap =

 oneSprite.getMotionVector();

 oneSprite.setMotionVector(

 otherSprite.getMotionVector());

 otherSprite.setMotionVector(swap);

 }//end bounceOffSprite()

Listing 8

An unplanned behavior

However, if you watch the animation very carefully, you may witness an interesting and totally

unplanned behavior. Sometimes, two sprites will travel side-by-side for a while and then

separate.

Why does this happen?

I haven't performed a detailed analysis to determine what causes this behavior, but I suspect that

it results from two sprites colliding at a very shallow angle. I suspect that simply swapping

motion vectors doesn't actually separate them, and they are deemed to have collided again during

the next animation update. If so, this causes them to swap motion vectors again, and the process

continues. Eventually, one or both of the sprites makes a random change in speed and direction,

at which point they separate.

Since these are animated sea creatures, I have chalked this behavior up to the natural mating

tendencies of sea creatures.

The drawScene method

In this program, the drawScene method is invoked by code in the overridden update method of

the controlling class. When the update method is invoked, it is passed a reference to an

offscreen graphics context.

An offscreen graphics context

The drawScene method receives a reference to an object of type Graphics as an incoming

parameter. This Graphics object represents a graphics context. While it could represent any

graphics context, in this program it represents the offscreen graphics context mentioned above.

Drawing pictures

The code in the drawScene method can draw pictures on the graphics context represented by the

incoming Graphics object by invoking the methods of the Graphics class on that object.

Listing 9 shows the beginning of the method named drawScene.

 public void drawScene(Graphics g){

 //Draw the background and erase

 // sprites from graphics area

 //Disable the following statement

 // for an interesting effect.

 backgroundImage.

 drawBackgroundImage(g);

Listing 9

The drawBackgroundImage method

The code in Listing 9 invokes the drawBackgroundImage method on the BackgroundImage

object, passing the graphics context as a parameter.

If you refer back to the discussion of the BackgroundImage class in the previous lesson, you

will see that the code in the drawBackgroundImage method invokes the drawImage method to

draw the background image on the graphics context that it receives an incoming parameter.

Covers all existing sprites

Because the size of the background image completely fills the graphics context, this has the

effect of drawing the background over all of the sprites that were previously drawn there.

An interesting effect

(You can disable the statement in Listing 9 to see an interesting effect that may help you to

understand what is going on in the drawing process.

Disabling this statement prevents the previously-drawn sprites from being covered up by the

background image, and the sprites simply accumulate in the drawing area. They end up looking

something like colored tube worms.)

Now draw the sprites

Once the new background image has been drawn on the graphics context, it is ready for the

drawing of the individual sprites in their new locations. This is accomplished by the code in

Listing 10.

 for (int cnt = 0;cnt < size();

 cnt++)

 ((Sprite)elementAt(cnt)).

 drawSpriteImage(g);

 }//end drawScene()

Listing 10

The drawSpriteImage method

The code in Listing 10 iterates through all of the sprites in the collection, invoking the

drawSpriteImage method on each sprite and passing a reference to the graphics context as a

parameter. This causes each of the individual sprites to be drawn in their new locations. (I will

discuss the drawSpriteImage method of the Sprite class in the next lesson.)

Collisions with the walls

The drawSpriteImage method of the Sprite class deals with the problem of sprites running into

the walls. When a sprite runs into one of the walls, it bounces off the wall.

Summary

In this lesson, I have explained the behavior of each of the methods of the SpriteManager

class. This included the following features:

 Finding an empty space for each new sprite

 Updating sprite positions

 Drawing the new scene during each animation cycle

 Managing collisions between sprites

What's Next?

There is one more class to cover before my discussion of this animation program is

complete: Sprite.

I will begin my discussion of the Sprite class in the next lesson.

Complete Program Listing

A complete listing of the program is provided in Listing 11.

/*File Animate01.java

Copyright 2001, R.G.Baldwin

This program displays several animated

colored spherical creatures swimming

around in an aquarium. Each creature

maintains generally the same course

with until it collides with another

creature or with a wall. However,

each creature has the ability to

occasionally make random changes in

its course.

**************************************/

import java.awt.*;

import java.awt.event.*;

import java.util.*;

public class Animate01 extends Frame

 implements Runnable {

 private Image offScreenImage;

 private Image backGroundImage;

 private Image[] gifImages =

 new Image[6];

 //offscreen graphics context

 private Graphics

 offScreenGraphicsCtx;

 private Thread animationThread;

 private MediaTracker mediaTracker;

 private SpriteManager spriteManager;

 //Animation display rate, 12fps

 private int animationDelay = 83;

 private Random rand =

 new Random(System.

 currentTimeMillis());

 public static void main(

 String[] args){

 new Animate01();

 }//end main

 //---------------------------------//

 Animate01() {//constructor

 // Load and track the images

 mediaTracker =

 new MediaTracker(this);

 //Get and track the background

 // image

 backGroundImage =

 Toolkit.getDefaultToolkit().

 getImage("background02.gif");

 mediaTracker.addImage(

 backGroundImage, 0);

 //Get and track 6 images to use

 // for sprites

 gifImages[0] =

 Toolkit.getDefaultToolkit().

 getImage("redball.gif");

 mediaTracker.addImage(

 gifImages[0], 0);

 gifImages[1] =

 Toolkit.getDefaultToolkit().

 getImage("greenball.gif");

 mediaTracker.addImage(

 gifImages[1], 0);

 gifImages[2] =

 Toolkit.getDefaultToolkit().

 getImage("blueball.gif");

 mediaTracker.addImage(

 gifImages[2], 0);

 gifImages[3] =

 Toolkit.getDefaultToolkit().

 getImage("yellowball.gif");

 mediaTracker.addImage(

 gifImages[3], 0);

 gifImages[4] =

 Toolkit.getDefaultToolkit().

 getImage("purpleball.gif");

 mediaTracker.addImage(

 gifImages[4], 0);

 gifImages[5] =

 Toolkit.getDefaultToolkit().

 getImage("orangeball.gif");

 mediaTracker.addImage(

 gifImages[5], 0);

 //Block and wait for all images to

 // be loaded

 try {

 mediaTracker.waitForID(0);

 }catch (InterruptedException e) {

 System.out.println(e);

 }//end catch

 //Base the Frame size on the size

 // of the background image.

 //These getter methods return -1 if

 // the size is not yet known.

 //Insets will be used later to

 // limit the graphics area to the

 // client area of the Frame.

 int width =

 backGroundImage.getWidth(this);

 int height =

 backGroundImage.getHeight(this);

 //While not likely, it may be

 // possible that the size isn't

 // known yet. Do the following

 // just in case.

 //Wait until size is known

 while(width == -1 || height == -1){

 System.out.println(

 "Waiting for image");

 width = backGroundImage.

 getWidth(this);

 height = backGroundImage.

 getHeight(this);

 }//end while loop

 //Display the frame

 setSize(width,height);

 setVisible(true);

 setTitle(

 "Copyright 2001, R.G.Baldwin");

 //Create and start animation thread

 animationThread = new Thread(this);

 animationThread.start();

 //Anonymous inner class window

 // listener to terminate the

 // program.

 this.addWindowListener(

 new WindowAdapter(){

 public void windowClosing(

 WindowEvent e){

 System.exit(0);}});

 }//end constructor

 //---------------------------------//

 public void run() {

 //Create and add sprites to the

 // sprite manager

 spriteManager = new SpriteManager(

 new BackgroundImage(

 this, backGroundImage));

 //Create 15 sprites from 6 gif

 // files.

 for (int cnt = 0; cnt < 15; cnt++){

 Point position = spriteManager.

 getEmptyPosition(new Dimension(

 gifImages[0].getWidth(this),

 gifImages[0].

 getHeight(this)));

 spriteManager.addSprite(

 makeSprite(position, cnt % 6));

 }//end for loop

 //Loop, sleep, and update sprite

 // positions once each 83

 // milliseconds

 long time =

 System.currentTimeMillis();

 while (true) {//infinite loop

 spriteManager.update();

 repaint();

 try {

 time += animationDelay;

 Thread.sleep(Math.max(0,time -

 System.currentTimeMillis()));

 }catch (InterruptedException e) {

 System.out.println(e);

 }//end catch

 }//end while loop

 }//end run method

 //---------------------------------//

 private Sprite makeSprite(

 Point position, int imageIndex) {

 return new Sprite(

 this,

 gifImages[imageIndex],

 position,

 new Point(rand.nextInt() % 5,

 rand.nextInt() % 5));

 }//end makeSprite()

 //---------------------------------//

 //Overridden graphics update method

 // on the Frame

 public void update(Graphics g) {

 //Create the offscreen graphics

 // context

 if (offScreenGraphicsCtx == null) {

 offScreenImage =

 createImage(getSize().width,

 getSize().height);

 offScreenGraphicsCtx =

 offScreenImage.getGraphics();

 }//end if

 // Draw the sprites offscreen

 spriteManager.drawScene(

 offScreenGraphicsCtx);

 // Draw the scene onto the screen

 if(offScreenImage != null){

 g.drawImage(

 offScreenImage, 0, 0, this);

 }//end if

 }//end overridden update method

 //---------------------------------//

 //Overridden paint method on the

 // Frame

 public void paint(Graphics g) {

 //Nothing required here. All

 // drawing is done in the update

 // method above.

 }//end overridden paint method

}//end class Animate01

//===================================//

class BackgroundImage{

 private Image image;

 private Component component;

 private Dimension size;

 public BackgroundImage(

 Component component,

 Image image) {

 this.component = component;

 size = component.getSize();

 this.image = image;

 }//end construtor

 public Dimension getSize(){

 return size;

 }//end getSize()

 public Image getImage(){

 return image;

 }//end getImage()

 public void setImage(Image image){

 this.image = image;

 }//end setImage()

 public void drawBackgroundImage(

 Graphics g) {

 g.drawImage(

 image, 0, 0, component);

 }//end drawBackgroundImage()

}//end class BackgroundImage

//===========================

class SpriteManager extends Vector {

 private BackgroundImage

 backgroundImage;

 public SpriteManager(

 BackgroundImage backgroundImage) {

 this.backgroundImage =

 backgroundImage;

 }//end constructor

 //---------------------------------//

 public Point getEmptyPosition(

 Dimension spriteSize){

 Rectangle trialSpaceOccupied =

 new Rectangle(0, 0,

 spriteSize.width,

 spriteSize.height);

 Random rand =

 new Random(

 System.currentTimeMillis());

 boolean empty = false;

 int numTries = 0;

 // Search for an empty position

 while (!empty && numTries++ < 100){

 // Get a trial position

 trialSpaceOccupied.x =

 Math.abs(rand.nextInt() %

 backgroundImage.

 getSize().width);

 trialSpaceOccupied.y =

 Math.abs(rand.nextInt() %

 backgroundImage.

 getSize().height);

 // Iterate through existing

 // sprites, checking if position

 // is empty

 boolean collision = false;

 for(int cnt = 0;cnt < size();

 cnt++){

 Rectangle testSpaceOccupied =

 ((Sprite)elementAt(cnt)).

 getSpaceOccupied();

 if (trialSpaceOccupied.

 intersects(

 testSpaceOccupied)){

 collision = true;

 }//end if

 }//end for loop

 empty = !collision;

 }//end while loop

 return new Point(

 trialSpaceOccupied.x,

 trialSpaceOccupied.y);

 }//end getEmptyPosition()

 //---------------------------------//

 public void update() {

 Sprite sprite;

 //Iterate through sprite list

 for (int cnt = 0;cnt < size();

 cnt++){

 sprite = (Sprite)elementAt(cnt);

 //Update a sprite's position

 sprite.updatePosition();

 //Test for collision. Positive

 // result indicates a collision

 int hitIndex =

 testForCollision(sprite);

 if (hitIndex >= 0){

 //a collision has occurred

 bounceOffSprite(cnt,hitIndex);

 }//end if

 }//end for loop

 }//end update

 //---------------------------------//

 private int testForCollision(

 Sprite testSprite) {

 //Check for collision with other

 // sprites

 Sprite sprite;

 for (int cnt = 0;cnt < size();

 cnt++){

 sprite = (Sprite)elementAt(cnt);

 if (sprite == testSprite)

 //don't check self

 continue;

 //Invoke testCollision method

 // of Sprite class to perform

 // the actual test.

 if (testSprite.testCollision(

 sprite))

 //Return index of colliding

 // sprite

 return cnt;

 }//end for loop

 return -1;//No collision detected

 }//end testForCollision()

 //---------------------------------//

 private void bounceOffSprite(

 int oneHitIndex,

 int otherHitIndex){

 //Swap motion vectors for

 // bounce algorithm

 Sprite oneSprite =

 (Sprite)elementAt(oneHitIndex);

 Sprite otherSprite =

 (Sprite)elementAt(otherHitIndex);

 Point swap =

 oneSprite.getMotionVector();

 oneSprite.setMotionVector(

 otherSprite.getMotionVector());

 otherSprite.setMotionVector(swap);

 }//end bounceOffSprite()

 //---------------------------------//

 public void drawScene(Graphics g){

 //Draw the background and erase

 // sprites from graphics area

 //Disable the following statement

 // for an interesting effect.

 backgroundImage.

 drawBackgroundImage(g);

 //Iterate through sprites, drawing

 // each sprite

 for (int cnt = 0;cnt < size();

 cnt++)

 ((Sprite)elementAt(cnt)).

 drawSpriteImage(g);

 }//end drawScene()

 //---------------------------------//

 public void addSprite(Sprite sprite){

 add(sprite);

 }//end addSprite()

}//end class SpriteManager

//===================================//

class Sprite {

 private Component component;

 private Image image;

 private Rectangle spaceOccupied;

 private Point motionVector;

 private Rectangle bounds;

 private Random rand;

 public Sprite(Component component,

 Image image,

 Point position,

 Point motionVector){

 //Seed a random number generator

 // for this sprite with the sprite

 // position.

 rand = new Random(position.x);

 this.component = component;

 this.image = image;

 setSpaceOccupied(new Rectangle(

 position.x,

 position.y,

 image.getWidth(component),

 image.getHeight(component)));

 this.motionVector = motionVector;

 //Compute edges of usable graphics

 // area in the Frame.

 int topBanner = (

 (Container)component).

 getInsets().top;

 int bottomBorder =

 ((Container)component).

 getInsets().bottom;

 int leftBorder = (

 (Container)component).

 getInsets().left;

 int rightBorder = (

 (Container)component).

 getInsets().right;

 bounds = new Rectangle(

 0 + leftBorder,

 0 + topBanner,

 component.getSize().width -

 (leftBorder + rightBorder),

 component.getSize().height -

 (topBanner + bottomBorder));

 }//end constructor

 //---------------------------------//

 public Rectangle getSpaceOccupied(){

 return spaceOccupied;

 }//end getSpaceOccupied()

 //---------------------------------//

 void setSpaceOccupied(

 Rectangle spaceOccupied){

 this.spaceOccupied = spaceOccupied;

 }//setSpaceOccupied()

 //---------------------------------//

 public void setSpaceOccupied(

 Point position){

 spaceOccupied.setLocation(

 position.x, position.y);

 }//setSpaceOccupied()

 //---------------------------------//

 public Point getMotionVector(){

 return motionVector;

 }//end getMotionVector()

 //---------------------------------//

 public void setMotionVector(

 Point motionVector){

 this.motionVector = motionVector;

 }//end setMotionVector()

 //---------------------------------//

 public void setBounds(

 Rectangle bounds){

 this.bounds = bounds;

 }//end setBounds()

 //---------------------------------//

 public void updatePosition() {

 Point position = new Point(

 spaceOccupied.x, spaceOccupied.y);

 //Insert random behavior. During

 // each update, a sprite has about

 // one chance in 10 of making a

 // random change to its

 // motionVector. When a change

 // occurs, the motionVector

 // coordinate values are forced to

 // fall between -7 and 7. This

 // puts a cap on the maximum speed

 // for a sprite.

 if(rand.nextInt() % 10 == 0){

 Point randomOffset =

 new Point(rand.nextInt() % 3,

 rand.nextInt() % 3);

 motionVector.x += randomOffset.x;

 if(motionVector.x >= 7)

 motionVector.x -= 7;

 if(motionVector.x <= -7)

 motionVector.x += 7;

 motionVector.y += randomOffset.y;

 if(motionVector.y >= 7)

 motionVector.y -= 7;

 if(motionVector.y <= -7)

 motionVector.y += 7;

 }//end if

 //Move the sprite on the screen

 position.translate(

 motionVector.x, motionVector.y);

 //Bounce off the walls

 boolean bounceRequired = false;

 Point tempMotionVector = new Point(

 motionVector.x,

 motionVector.y);

 //Handle walls in x-dimension

 if (position.x < bounds.x) {

 bounceRequired = true;

 position.x = bounds.x;

 //reverse direction in x

 tempMotionVector.x =

 -tempMotionVector.x;

 }else if ((

 position.x + spaceOccupied.width)

 > (bounds.x + bounds.width)){

 bounceRequired = true;

 position.x = bounds.x +

 bounds.width -

 spaceOccupied.width;

 //reverse direction in x

 tempMotionVector.x =

 -tempMotionVector.x;

 }//end else if

 //Handle walls in y-dimension

 if (position.y < bounds.y){

 bounceRequired = true;

 position.y = bounds.y;

 tempMotionVector.y =

 -tempMotionVector.y;

 }else if ((position.y +

 spaceOccupied.height)

 > (bounds.y + bounds.height)){

 bounceRequired = true;

 position.y = bounds.y +

 bounds.height -

 spaceOccupied.height;

 tempMotionVector.y =

 -tempMotionVector.y;

 }//end else if

 if(bounceRequired)

 //save new motionVector

 setMotionVector(

 tempMotionVector);

 //update spaceOccupied

 setSpaceOccupied(position);

 }//end updatePosition()

 //---------------------------------//

 public void drawSpriteImage(

 Graphics g){

 g.drawImage(image,

 spaceOccupied.x,

 spaceOccupied.y,

 component);

 }//end drawSpriteImage()

 //---------------------------------//

 public boolean testCollision(

 Sprite testSprite){

 //Check for collision with

 // another sprite

 if (testSprite != this){

 return spaceOccupied.intersects(

 testSprite.getSpaceOccupied());

 }//end if

 return false;

 }//end testCollision

}//end Sprite class

//===================================//

Listing 11

Copyright 2001, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java and XML. In addition to the

many platform-independent benefits of Java applications, he believes that a combination of Java

and XML will become the primary driving force in the delivery of structured information on the

Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

