
Swing from A to Z

The border Property

Part 2, BevelBorder and EmptyBorder

By Richard G. Baldwin

Java Programming, Lecture Notes # 1021

August 28, 2000

 Preface

 Introduction

 Sample Program

 Interesting Code Fragments

 Summary

 Where To From Here?

 Complete Program Listing

Preface

This lesson is Part 2 of a miniseries designed to illustrate the border property and the use of that

property to construct fancy borders on Swing components.

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them, without losing your place.

Recommended supplementary reading

It is strongly recommended that you study Part 1 entitled Swing from A to Z, The border

Property, Part1, EtchedBorder before embarking on this part.

It is also recommended that you read the following lesson, which you will find at Baldwin's Java

Programming Tutorials.

Swing, Hidden Buttons with Icons, Icon Images, Borders, Tool Tips, Nested

Buttons, and Other Fun Stuff

Java1020.htm
Java1020.htm
http://www.geocities.com/Athens/7077/scoop/onjava.html

That lesson illustrates some very interesting uses of borders with buttons to cause buttons to rise

up from the surface when you point at them with the mouse.

Introduction

What's in this lesson?

This is the second of several sequential lessons that emphasize an understanding of the border

property along with the use of that property to construct components having different border

styles.

Several parts are needed

Because of the large amount of material involved, I have decided to break this discussion into

several parts.

What was in Part 1?

Part 1 set the background for future discussions, and also dealt specifically with the use of the

EtchedBorder class to create borders of a style known as etched borders.

What about Part 2?

This lesson, Part 2, deals specifically with the use of the BevelBorder class to create two

different styles of beveled, three-dimensional borders.

This lesson also illustrates the use of the EmptyBorder class to provide blank space around the

component to which the border is being applied.

Sample Program

A screen shot

The name of the sample program that I will discuss to illustrate borders is Swing13.

A screen shot of the GUI that is produced when the program is started is shown below.

Java1020.htm

Figure 1 A screen shot of the program running.

Twelve JLabel objects

The program creates and displays twelve different JLabel objects, applying a different border

style to each of them. As you can see, with Swing, there are many different ways to display a

label simply by taking control of the border property.

The first object in the upper left-hand corner was discussed in Part 1.

This lesson will discuss the right-most object in the first row, and both objects in the second row.

Interesting Code Fragments

I will continue discussing the program in fragments. A complete listing of the program is

provided in Listing 4. I will skip those parts of the program that were discussed in Part 1.

The constructor

Java1020.htm
Java1020.htm

Following some preliminary material, the constructor, which you can view in its entirety in

Listing 4, contains twelve fairly complex statements. Each of the twelve statements causes a

JLabel object to be displayed with a specified border style.

The text displayed in each JLabel object label consists of the concatenation of a specified text

value, and the left and top insets for the specified border style.

Open in another browser window

At this point, it may be helpful for you to open a copy of this lesson in another browser window

so you can see the screen shot of the GUI while I discuss the different border styles.

BevelBorder RAISED,2,2

Listing 1 shows the code fragment that caused the label in the upper-right corner of the screen

shot to be added to the contentPane of the JFrame container.

 getContentPane().add(makeLabel(
 "BevelBorder RAISED",new BevelBorder(
 BevelBorder.RAISED)));

Listing 1

The specified text content

The first parameter to the makeLabel() method is highlighted in Italics in the code fragment of

Listing 1. This parameter eventually becomes part of the text content of the label.

This string is concatenated with the inset values for the specified border style. The concatenated

string is set into the text property for the label. This, in turn, causes the combination of the

specified text string and the inset values to be displayed as the text value for the label.

Thus, the text displayed in the upper right-hand label is

BevelBorder RAISED,2,2

This indicates that the top and left insets for the BevelBorder style are each two pixels.

The specified border style

The second parameter to the makeLabel() method, highlighted in boldface in Listing 1, is a

reference to a new object of the class BevelBorder.

Here is what Sun has to say about the BevelBorder class.

A class which implements a simple 2 line bevel

border.

As is sometimes the case with the Sun documentation, this isn't very illuminating.

Constructors

There are three constructors for the BevelBorder class. I used the simplest of the three in

Listing 1.

Raised or lowered?

All three constructors allow you to provide an integer constant that specifies whether the

component should appear to protrude out of the screen (RAISED) or be depressed into the screen

(LOWERED).

For this component, I specified that the label should be RAISED. As you can see from the

screen shot, this label appears to protrude out of the screen.

Color, highlight, and shadows

The other two constructors for the BevelBorder class allow you to customize the color,

highlight, and shadow information, presumably to produce a three-dimensional border that is

more to your liking.

BevelBorder LOWERED,2,2

Listing 2 shows the code that caused a "LOWERED" version of the label with the BevelBorder

to be added to the contentPane of the JFrame object.

 getContentPane().add(makeLabel(
 "BevelBorder LOWERED",new BevelBorder(
 BevelBorder.LOWERED)));

Listing 2

This code fragment is exactly like the previous code fragment except for the value of the

parameter passed to the constructor for the BevelBorder class (LOWERED instead of RAISED).

See it in the screen shot

This label appears in the screen shot on the left side of the second row.

The size of the label

As was the case in the previous lesson, the default size of the label with the beveled border is

barely large enough to accommodate its text, particularly on the ends.

The inset values

The inset of the left border and the inset of the top border each have a value of two pixels for the

beveled border.

Although I didn't display the inset for the right border and the bottom border, they are probably

the same.

EmptyBorder,5,5

A solution, or at least the beginning of a solution, to the size problem is shown by the code in

Listing 3.

getContentPane().add(makeLabel(
 "EmptyBorder",new EmptyBorder(
 5,5,5,5)));

Listing 3

The code in Listing 3 caused the label shown in the right-hand side of the second row of the

screen shot to be added to the contentPane container. This label has an EmptyBorder.

What does Sun have to say?

Here is what Sun has to say about this border.

A class which provides an empty, transparent
border which takes up space but does no
drawing.

Regardless on Sun's brevity on the matter, this is an important border style.

The constructor for EmptyBorder

The arguments to the constructor allow you to specify a band of blank space on each of the four

sides of the component. You can specify different values for each side if you want to.

When used alone, this border provides an improvement in the appearance of a label with an

opaque background where the text is normally crammed up against the ends.

Very useful with CompoundBorder

As we will see in the next lesson, this border style can be used with a CompoundBorder object

to produce components whose appearance is much improved over the first three labels in the

screen shot.

Two overloaded constructors

Two overloaded constructors are available for the EmptyBorder class.

One constructor accepts a single parameter of the Insets class. The other constructor accepts

four int parameters.

Whichever constructor you use, you specify the amount of blank space in pixels on each of the

four sides of the component. In Listing 3, I specified a blank space of five pixels on each of the

four sides of the JLabel object.

Summary

This lesson has continued the discussion of the border property, and has shown you how to use

that property to cause fancy borders to be rendered on Swing components.

So far, four different standard borders have been shown:

 EtchedBorder

 BevelBorder RAISED

 BevelBorder LOWERED

 EmptyBorder

When the first three of these were applied to a JLabel object, the results weren't very attractive

because the ends of the text were too close to the edge of the label.

The third border can be used to provide empty space on each of the four sides of the component,

which can be used to solve the problem described above.

Where To From Here?

The real solution to the problem described above involves the combined use of the

EmptyBorder and the CompoundBorder, which will be the subject of the next lesson.

Complete Program Listing

A complete listing of the program is shown in Listing 4.

/*File Swing13
Rev 3/28/00
Copyright 2000, R.G.Baldwin

Illustrates the border property. This
program creates and displays several
different border types surrounding a
JLabel object.

Tested using JDK 1.2.2 under WinNT 4.0 WkStn
**********************************/

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;

class Swing13 extends JFrame{

 //---------------------------------------//

 public static void main(String args[]) {
 new Swing13();
 }//end main()
 //---------------------------------------//

 //The purpose of this method is to create
 // and return an opaque pink JLabel with
 // a border. The text content of the
 // lable is provided as the first
 // parameter. The border type is provided
 // as the second parameter. When the
 // label is displayed, the left and top
 // insets are displayed following the
 // text content of the label.
 JLabel makeLabel(
 String content,Border borderType){

 JLabel label = new JLabel();
 label.setBorder(borderType);
 label.setOpaque(true);
 label.setBackground(Color.pink);

 label.setText(content + ","
 +label.getInsets().left + ","
 +label.getInsets().top);

 return label;

 }//end makeLabel()
 //---------------------------------------//

 Swing13(){//constructor

 getContentPane().setLayout(
 new FlowLayout());

 getContentPane().add(makeLabel(
 "EtchedBorder",new EtchedBorder()));
 getContentPane().add(makeLabel(
 "BevelBorder RAISED",new BevelBorder(
 BevelBorder.RAISED)));
 getContentPane().add(makeLabel(
 "BevelBorder LOWERED",new BevelBorder(
 BevelBorder.LOWERED)));
 getContentPane().add(makeLabel(
 "EmptyBorder",new EmptyBorder(
 5,5,5,5)));
 getContentPane().add(makeLabel(
 "Compound, Empty + BevelBorder RAISED",
 new CompoundBorder(new BevelBorder(
 BevelBorder.RAISED),new EmptyBorder(
 5,5,5,5))));
 getContentPane().add(makeLabel(
 "Compound, Empty + BevelBorder LOWERED",
 new CompoundBorder(new BevelBorder(

 BevelBorder.LOWERED),new EmptyBorder(
 5,5,5,5))));

 getContentPane().add(makeLabel(
 "Compound, Empty + SoftBevelBorder " +
 "RAISED",
 new CompoundBorder(new SoftBevelBorder(
 SoftBevelBorder.RAISED),new EmptyBorder(
 5,5,5,5))));
 getContentPane().add(makeLabel(
 "Compound, Empty + SoftBevelBorder " +
 "LOWERED",
 new CompoundBorder(new SoftBevelBorder(
 SoftBevelBorder.LOWERED),
 new EmptyBorder(
 5,5,5,5))));
 getContentPane().add(makeLabel(
 "Compound, Empty + LineBorder",
 new CompoundBorder(new LineBorder(
 Color.blue,5),new EmptyBorder(
 5,5,5,5))));
 getContentPane().add(makeLabel(
 "Compound, Empty + MatteBorder Image",
 new CompoundBorder(new MatteBorder(
 19,19,19,19,new ImageIcon(
 "blue-ball.gif")),new EmptyBorder(
 5,5,5,5))));

 getContentPane().add(makeLabel(
 "Compound, Empty + MatteBorder Color",
 new CompoundBorder(new MatteBorder(
 19,19,19,19,Color.blue),
 new EmptyBorder(5,5,5,5))));

 getContentPane().add(makeLabel(
 "Compound, Empty + TitledBorder",
 new CompoundBorder(new TitledBorder(
 "Title"),new EmptyBorder(5,5,5,5))));

 setTitle("Copyright 2000, R.G.Baldwin");
 setSize(329,500);
 setVisible(true);

 //.....................................//
 //Anonymous inner terminator class
 this.addWindowListener(
 new WindowAdapter(){
 public void windowClosing(
 WindowEvent e){
 System.exit(0);
 }//end windowClosing()
 }//end WindowAdapter
);//end addWindowListener
 //.....................................//

 }//end constructor

}//end class Swing13

Listing 4

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin.richard@iname.com

