
Swing from A to Z

The border Property

Part 1, EtchedBorder

By Richard G. Baldwin

Java Programming, Lecture Notes # 1020

August 21, 2000

 Preface

 Introduction

 Sample Program

 Interesting Code Fragments

 Summary

 Where To From Here?

 Complete Program Listing

Preface

This series of lessons entitled Swing from A to Z, discusses the capabilities and features of Swing

in quite a lot of detail. This series is intended for those persons who need to really understand

what Swing is all about.

Recommended supplementary reading

It is recommended that in addition to studying this set of lessons, you also study my earlier

lessons on Swing. A list of some of my Swing lessons can be found in an earlier lesson in this

series. The lessons themselves can be found at Baldwin's Java Programming Tutorials.

The earlier lessons will introduce you to the use of Swing while avoiding much of the detail

included in this series.

A recommended lesson

Since this lesson deals with borders, I particularly recommend the lesson entitled "Swing,

Hidden Buttons with Icons, Icon Images, Borders, Tool Tips, Nested Buttons, and Other Fun

Stuff." That lesson illustrates some very interesting uses of borders with buttons to cause

buttons to rise up from the surface when you point at them with the mouse.

mailto:baldwin.richard@iname.com
Java1005.htm#titles
http://www.geocities.com/Athens/7077/scoop/onjava.html

Introduction

Properties, events, and methods

In an earlier lesson, I provided lists of properties, events, and methods defined in JComponent

and its superclasses: Container, Component, and Object.

Default appearance and behavior

Because most Swing components extend JComponent, the properties, events, and methods

defined in those classes provide the default appearance and behavior of most of the Swing

components.

Understanding common properties, events, and methods

The next few lessons concentrate on understanding of these common properties, events, and

methods in order to provide an overall knowledge of the appearance and behavior of Swing

components.

Will discuss specialized appearance and behavior later

After I have illustrated this common appearance and behavior, I will embark on a study of the

additional specialized appearance and behavior associated with individual components.

What's in this lesson?

This is the first of several lessons that emphasize an understanding of the border property along

with the use of that property to construct components having different border styles.

Several parts are needed

Because of the large amount of material involved, I have decided to break this discussion into

several parts. This is Part 1. It sets the background for future discussions, and also deals

specifically with the use of the EtchedBorder class.

Sample Program

A screen shot

The name of the sample program that I will discuss to illustrate borders is Swing13.

A screen shot of the GUI that is produced when the program is run is shown below as Figure 1.

Figure 1 Screen Shot of the GUI

Twelve JLabel objects

The program creates and displays twelve different JLabel objects, applying a different border

style to each of them.

As you can see, a wide variety of possible border styles are available, and this is just a sampling

of the possibilities.

Apply to all Swing components

These different border styles can be applied to all Swing components that extend JComponent,

either directly or indirectly.

Can also define your own borders

If you want to, you can also define your own custom borders as well.

Interesting Code Fragments

I will discuss the program in fragments. A complete listing of the program is provided later as

Listing 6.

The controlling class

Listing 1 shows the beginning of the controlling class and the main() method.

class Swing13 extends JFrame{

 public static void main(String args[]) {
 new Swing13();
 }//end main()

Listing 1

The controlling class extends JFrame so that an object of the controlling class is a GUI that can

be placed directly on the desktop.

Instantiate an object of the controlling class

The main() method instantiates an object of the controlling class, causing the GUI to appear on

the screen.

The makeLabel() method

Listing 2 shows the beginning of a convenience method named makeLabel(). This method is

designed to instantiate and to return a reference to an opaque JLabel object with a specified

border and a pink background.

 JLabel makeLabel(
 String content,Border borderType){

 JLabel label = new JLabel();
 label.setBorder(borderType);
 label.setOpaque(true);
 label.setBackground(Color.pink);

Listing 2

A convenience method

This method is provided to reduce the amount of code required to instantiate the twelve JLabel

objects with borders. By using this method, it is possible to avoid the requirement to repeat the

same code twelve times.

Text content of the label

The text content of the label is provided as the first incoming parameter to the method.

The required border style

The required border style is provided as the second incoming parameter. Note that this

parameter is a reference to an object of type Border.

The new code

The only thing new in the code in Listing 2 is the use of the setBorder() method to set the

border property of the label object. This setter method requires a parameter that is a reference to

an object of a class that implements the Border interface (a reference to an object of type

Border).

What does Sun have to say?

Here is what Sun has to say about the setBorder() method.

Sets the border of this component. The Border
object is responsible for defining the insets for the
component (overriding any insets set directly on
the component) and for optionally rendering any
border decorations within the bounds of those
insets.

Borders should be used (rather than insets) for
creating both decorative and non-decorative (e.g.
margins and padding) regions for a swing
component.

Compound borders can be used to nest multiple
borders within a single component.

The insets

The term insets is a term that is used to describe the width of the border in pixels.

The getInsets() method returns the value of the insets property of the object on which the

method is invoked. This value is returned as a reference to an object of the Insets class.

The Insets class

An object of the Insets class encapsulates four public fields of type int. The four fields contain

the widths in pixels of the left, right, bottom, and top sections of the border.

Because they are public, these field values can be accessed simply by joining the name of the

field to the name of a reference to the Insets object. (No accessor method is required.)

The remainder of the makeLabel() method

Listing 3 shows the remainder of the method named makeLabel().

 label.setText(content + ","
 +label.getInsets().left + ","
 +label.getInsets().top);
 return label;
 }//end makeLabel()

Listing 3

The getInsets() method is used to get the inset values for the left border and top border. These

two values are concatenated with the specified text content so that they will be displayed as the

text on the label when the label is rendered.

Returns a JLabel object

The method returns a reference to a JLabel object, with an opaque pink background, having the

specified borders, and having a text property whose value is the concatenation of the specified

text value and the inset values for the left and top borders.

The constructor

Listing 4 shows the beginning of the constructor, which sets the layout manager to FlowLayout.

 Swing13(){//constructor
 getContentPane().setLayout(
 new FlowLayout());

Listing 4

Will honor preferred size of the labels

As mentioned in an earlier lesson, this layout manager will attempt to honor both dimensions of

the preferred size while displaying each label.

In this case, the value of the preferredSize property is automatically set, taking the borders and

the text content of the label into account.

The rest of the constructor

Following this, the constructor contains twelve fairly complex statements. Each of the twelve

statements causes a JLabel object to be displayed with

 A specified border style,

 The specified text content, and

 The left and top insets for the specified border style.

Open in another browser window

At this point, it may be helpful for you to open a copy of this lesson in another browser window

so you can see the screen shot of the GUI while I discuss the different border styles.

EtchedBorder,2,2

Listing 5 shows the code fragment that causes the label in the upper-left corner of the screen shot

to be added to the JFrame container.

 getContentPane().add(makeLabel(
 "EtchedBorder",new
EtchedBorder()));

Listing 5

Uses the makeLabel() method

This fragment invokes the makeLabel() method discussed above, passing the two required

parameters.

The specified text content

The first parameter is the string "EtchedBorder" that is to become part of the text content of the

label.

As you will recall, this string is concatenated with the inset values for the border and set into the

text property for the label. This, in turn, causes the concatenated string to be displayed as the

text on the face of the label. For this case, the resulting text on the face of the label is:

EtchedBorder,2,2

The specified border style

The second parameter to the makeLabel() method is a reference to a new object of the class

EtchedBorder. This class (as well as the other classes that I will discuss in the following

paragraphs) extends the class named AbstractBorder.

AbstractBorder

The AbstractBorder class implements the Border interface. Therefore, a reference to an object

of the EtchedBorder class satisfies the requirement that the second parameter to the

makeLabel() method be a reference to an object of type Border.

Creating your own borders

If you decide to create your own custom borders, probably the best way to do so is to extend the

AbstractBorder class.

Now back to EtchedBorder

Here is part of what Sun has to say about the EtchedBorder class.

A class which implements a simple etched border
which can either be etched-in or etched-out.

If no highlight/shadow colors are initialized when
the border is created, then these colors will be
dynamically derived from the background color of
the component argument passed into the
paintBorder() method.

The default case

The default case for the noarg constructor that I used is to produce a border that appears to be

etched or chiseled out of the surface (a ditch). It has a very modest three-dimensional

appearance created using highlights and shadows.

Other constructors available

As you can probably surmise from the Sun text provided above, there are other constructors that

allow you to cause the border to appear as a small hill instead of a ditch. It is also possible to

specify the colors used for highlights and shadows as well.

The size of the label

As you can see from the screen shot, the default size of the label object with the etched border is

barely large enough to accommodate its text, particularly on the ends. All in all, it is pretty ugly.

We will see how to remedy this situation later by using a compound border.

The inset values

As you can also see from the text displayed in the label in the screen shot, the inset (width) of the

left border and the inset of the top border are each two pixels.

Although I didn't display the inset for the right border and the bottom border, they appear to be

the same for this border style.

Summary

In this lesson, I have introduced you to the general concept of applying borders to Swing

components. I have illustrated the specific border style known as an EtchedBorder.

Where To From Here?

I will discuss two different versions of the border style known as BevelBorder in the next

lesson.

Complete Program Listing

A complete listing of the program is provided in Listing 6. The purpose of this lesson was to

introduce you to the use of borders in Swing. As you saw from the screen shot, this program

produces a large number and variety of border styles. I have discussed only a small part of the

program, along with only one border style in this lesson. I will continue discussing the program

is future lessons.

/*File Swing13
Rev 3/28/00
Copyright 2000, R.G.Baldwin

Illustrates the border property. This
program creates and displays several
different border types surrounding a
JLabel object.

Tested using JDK 1.2.2 under WinNT 4.0 WkStn
**********************************/

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;

class Swing13 extends JFrame{

 //---------------------------------------//

 public static void main(String args[]) {
 new Swing13();
 }//end main()
 //---------------------------------------//

 //The purpose of this method is to create
 // and return an opaque pink JLabel with
 // a border. The text content of the
 // lable is provided as the first
 // parameter. The border type is provided
 // as the second parameter. When the
 // label is displayed, the left and top
 // insets are displayed following the
 // text content of the label.
 JLabel makeLabel(
 String content,Border borderType){

 JLabel label = new JLabel();
 label.setBorder(borderType);

 label.setOpaque(true);
 label.setBackground(Color.pink);

 label.setText(content + ","
 +label.getInsets().left + ","
 +label.getInsets().top);

 return label;

 }//end makeLabel()
 //---------------------------------------//

 Swing13(){//constructor

 getContentPane().setLayout(
 new FlowLayout());

 getContentPane().add(makeLabel(
 "EtchedBorder",new EtchedBorder()));
 getContentPane().add(makeLabel(
 "BevelBorder RAISED",new BevelBorder(
 BevelBorder.RAISED)));
 getContentPane().add(makeLabel(
 "BevelBorder LOWERED",new BevelBorder(
 BevelBorder.LOWERED)));
 getContentPane().add(makeLabel(
 "EmptyBorder",new EmptyBorder(
 5,5,5,5)));
 getContentPane().add(makeLabel(
 "Compound, Empty + BevelBorder
RAISED",
 new CompoundBorder(new BevelBorder(
 BevelBorder.RAISED),new EmptyBorder(
 5,5,5,5))));
 getContentPane().add(makeLabel(
 "Compound, Empty + BevelBorder
LOWERED",
 new CompoundBorder(new BevelBorder(
 BevelBorder.LOWERED),new EmptyBorder(
 5,5,5,5))));

 getContentPane().add(makeLabel(
 "Compound, Empty + SoftBevelBorder " +
 "RAISED",
 new CompoundBorder(new
SoftBevelBorder(
 SoftBevelBorder.RAISED),new
EmptyBorder(
 5,5,5,5))));
 getContentPane().add(makeLabel(
 "Compound, Empty + SoftBevelBorder " +
 "LOWERED",
 new CompoundBorder(new
SoftBevelBorder(
 SoftBevelBorder.LOWERED),
 new EmptyBorder(
 5,5,5,5))));
 getContentPane().add(makeLabel(
 "Compound, Empty + LineBorder",
 new CompoundBorder(new LineBorder(
 Color.blue,5),new EmptyBorder(
 5,5,5,5))));
 getContentPane().add(makeLabel(
 "Compound, Empty + MatteBorder Image",
 new CompoundBorder(new MatteBorder(
 19,19,19,19,new ImageIcon(

 "blue-ball.gif")),new EmptyBorder(
 5,5,5,5))));

 getContentPane().add(makeLabel(
 "Compound, Empty + MatteBorder Color",
 new CompoundBorder(new MatteBorder(
 19,19,19,19,Color.blue),
 new EmptyBorder(5,5,5,5))));

 getContentPane().add(makeLabel(
 "Compound, Empty + TitledBorder",
 new CompoundBorder(new TitledBorder(
 "Title"),new EmptyBorder(5,5,5,5))));

 setTitle("Copyright 2000, R.G.Baldwin");
 setSize(329,500);
 setVisible(true);

 //.....................................//
 //Anonymous inner terminator class
 this.addWindowListener(
 new WindowAdapter(){
 public void windowClosing(
 WindowEvent e){
 System.exit(0);
 }//end windowClosing()
 }//end WindowAdapter
);//end addWindowListener
 //.....................................//

 }//end constructor

}//end class Swing13

Listing 6

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

mailto:baldwin.richard@iname.com
http://www.geocities.com/Athens/7077/scoop/onjava.html

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin.richard@iname.com

-end-

mailto:baldwin.richard@iname.com

