
March 6, 2000

Java 2D Graphics, Solid Color Fill

Java Programming, Lecture Notes # 312

by Richard G. Baldwin

baldwin@austin.cc.tx.us

 Introduction

 Methods of the Graphics2D Class

 The Paint Interface

 The PaintContext Interface

 The Good News and the Bad News

 The Three Paint Classes

 Summary

 Complete Program Listings

Introduction

In an earlier lesson, I explained that the Graphics2D class extends the Graphics class to provide

more sophisticated control over geometry, coordinate transformations, color management, and

text layout. Beginning with JDK 1.2, Graphics2D is the fundamental class for rendering two-

dimensional shapes, text and images.

I also explained that without understanding the behavior of other classes and interfaces such as

Shape, AffineTransform, GraphicsConfiguration, PathIterator, and Stroke, it is not possible

to fully understand the inner workings of the Graphics2D class.

What has been covered previously?

Earlier lessons have explained a number of Java 2D concepts, including Shape,

AffineTransform, and PathIterator. I am saving GraphicsConfiguration until later because it

is fairly complicated. Before, I can explain the Stroke class, I need to explain how to fill a

Shape. The purpose of this lesson, and the next couple of lessons is to help you to understand

how the fill process works in Java 2D.

Lessons build on one another

As you can see, each of the lessons in this series on Java 2D builds on the knowledge that you

have gained by studying previous lessons. For that reason, I hope that you are taking the time to

study the lessons in sequence.

Methods of the Graphics2D Class

mailto:baldwin@austin.cc.tx.us

The Graphics2D class has dozens of methods. In this lesson, I will be primarily concerned with

the following three methods:

 setPaint(Paint paint)

 fill(Shape s)

 draw(Shape s)

I have used the draw() method in numerous previous lessons, so it isn’t new to this lesson and

won’t merit much discussion. However, setPaint() and fill() are new to this lesson. I will

discuss them both in detail

The setPaint(Paint paint) method

Here is part of what Sun has to say about the setPaint() method:

Sets the Paint attribute for the

Graphics2D context. Calling this

method with a null Paint object does not

have any effect on the current Paint

attribute of this Graphics2D.

Parameters:

paint - the Paint object to be used to

generate color during the rendering

process, or null

The terminology here can be a little confusing, especially with respect to the use of the word

paint.

First, the class named Graphics2D has a property named paint. The method setPaint() is a

typical setter method used to set the paint property.

The parameter that is passed to this method must be a reference to an object of a class that

implements the interface named Paint.

The Paint Interface

Here is what Sun has to say about the Paint interface.

“This Paint interface defines how color

patterns can be generated for

Graphics2D operations. A class

implementing the Paint interface is

added to the Graphics2D context in

order to define the color pattern used by

the draw and fill methods.”

This interface declares a single method named createContext() that returns a reference to an

object of a class that implements the PaintContext interface. (I tell my Java students at least

four or five times during each semester that if they don’t understand the Java interface, they

really don’t understand Java.)

The PaintContext Interface

Here is what Sun has to say about the PaintContext interface.

The PaintContext interface defines the

encapsulated and optimized environment

to generate color patterns in device space

for fill or stroke operations on a

Graphics2D. The PaintContext

provides the necessary colors for

Graphics2D operations in the form of a

Raster associated with a ColorModel.

The PaintContext maintains state for a

particular paint operation. In a multi-

threaded environment, several contexts

can exist simultaneously for a single

Paint object.

Obviously, I could continue tracking the path through the hierarchy, but that won’t be necessary.

The Good News and the Bad News

The bad news is that this can all be very complicated. The good news is that unless you intend to

define a class that implements the Paint interface, you don’t need to be concerned about many of

these details.

(See a later reference to Knudsen’s book for an example of how to define your own class to

implement the Paint interface.)

All you really need to know is the following:

To set the paint property of a Graphics2D object, all that you must do is invoke the

setPaint() method on that object, passing a reference to an object instantiated from a

class that implements the Paint interface as a parameter.

Fortunately, there are several useful classes in the 2D API that implement the Paint interface so

you may not need to define your own class that implements Paint.

The fill(Shape s) method

Why would you want to set the paint property of the Graphics2D object in the first place?

Because, when you invoke the fill() method, passing a reference to a Shape object to that

method, the Shape object will be filled using the Paint object that was previously established by

invoking the setPaint() method.

The bottom line

The bottom line is, if you want to fill a Shape object before you draw it, you accomplish this

with the following two steps:

1. Invoke setPaint() on the Graphics2D object, passing a reference to an object of a class

that implements the Paint interface as a parameter.

2. Invoke the fill() method on the Graphics2D object, passing a reference to the Shape

object that you want to fill as a parameter.

As I mentioned in an earlier lesson, in his book, Java Foundation Classes in a Nutshell, David

Flanagan tells us that the Java 2D definition of a Shape does not require the shape to enclose an

area. In other words, a Shape object can represent an open curve. According to Flanagan, if an

open curve is passed to a method that requires a closed curve (such as fill()), the curve is

automatically closed by connecting its end points with a straight line.

The Three Paint Classes

The Java2D API provides at least three classes that implement the Paint interface:

 Color

 GradientPaint

 TexturePaint

(As of JDK 1.2.2, this is apparently all of the classes in the API that implement Paint, but you

can always define your own.)

The Color class

The Color class can be used to fill a Shape object with a solid color. This will be the topic of

the remainder of this lesson.

The GradientPaint class

The GradientPaint class can be used to fill a Shape with a color gradient. The gradient

progresses from one specified color at one point to a different specified color at a different

point. The two colors can be stabilized beyond the two points (acyclic) or the gradient can be

caused to repeat in a cyclic fashion beyond the two points (cyclic).

In his book entitled Java 2D Graphics, Jonathan Knudsen provides a sample program that

produces a radial color gradient. This is a good example program to take a look at if you need to

define your own class that implements the Paint interface.

Use of the GradientPaint class will be the topic of a subsequent lesson.

The TexturePaint class

The TexturePaint class can be used to fill a Shape with a tiled version of a BufferedImage

object. This will also be the topic of a subsequent lesson.

Sample Program

The name of this program is PaintColor01. It illustrates the use of a Paint object to fill a Shape

with a solid color. In this case, the Paint object is an instance of the Color class, which

implements the interface named Paint.

The GUI is a Frame object

The program draws a four-inch by four-inch Frame on the screen. It translates the origin to the

center of the Frame. Then it draws a pair of X and Y-axes centered on the new origin. So far,

this is very similar to the sample programs that I have explained in previous lessons.

A circle in each quadrant

The program then draws one two-inch diameter circle in each quadrant. It fills the upper left

circle with solid red, the upper right circle with solid green, the lower left circle with solid blue,

and the lower right circle with solid yellow

The program was tested using JDK 1.2.2 under WinNT Workstation 4.0

This discussion of dimensions in inches

on the screen depends on the method

named getScreenResolution() returning

the correct value. However, the

getScreenResolution() method always

seems to return 120 on my computer

regardless of the actual screen resolution

settings.

Will discuss in fragments

As is often the case, I will discuss this program in fragments. The controlling class and the

constructor for the GUI class are essentially the same as you have seen in several previous

lessons, so, I won’t bore you by repeating that discussion here. You can view that material in the

complete listing of the program at the end of the lesson.

All of the interesting action takes place in the overridden paint() method, so I will begin the

discussion there.

Overridden paint() method

The beginning portions of the overridden paint() method should be familiar to you by now as

well. So, I am simply going to let the comments in Figure 1 speak for themselves.

 //Override the paint() method

 public void paint(Graphics g){

 //Downcast the Graphics object to a

 // Graphics2D object

 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on

 // the screen

 // based on actual screen resolution.

 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame

 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis

 g2.draw(new Line2D.Double(

 -1.5*ds,0.0,1.5*ds,0.0));

 //Draw y-axis

 g2.draw(new Line2D.Double(

 0.0,-1.5*ds,0.0,1.5*ds));

Figure 1

The interesting part

That brings us to the interesting part, which, if you understand the previous discussion, you will

find to be very straightforward.

The code in the next four fragments draws a circle in the upper left quadrant of the Frame and

fills the circle with the color red.

An object that implements the Shape interface

The code in Figure 2 instantiates an object of the Ellipse2D.Double class. This is one of several

classes in the API that can be used to produce geometric objects that implement the Shape

interface.

 Ellipse2D.Double circle1 =

 new Ellipse2D.Double(

 -2.0*ds,-2.0*ds,2.0*ds,2.0*ds);

Figure 2

Recall that the parameters required for the constructor of this class specify a bounding rectangle

for the ellipse. If that bounding rectangle describes a square, the ellipse turns into a circle.

Assuming that the variable ds contains the actual screen resolution, the parameters used in this

fragment describe a bounding rectangle (square) that is two inches one each side, and whose

upper left-hand corner is positioned two inches above and two inches to the left of the

origin. This will produce a circle with a two-inch diameter, located in the upper left-hand

quadrant of the Frame.

An object that implements the Paint interface

Figure 3 instantiates a new object of the class Color, initialized to the color red, and passes it to

the setPaint() method of the Graphics2D object. (Recall that the Color class implements the

Paint interface, so this satisfies the type requirements of the parameter to the setPaint()

method.)

 g2.setPaint(new Color(255,0,0));//red

Figure 3

Filling the upper left-hand circle

Figure 4 invokes the fill() method on the Graphics2D object, passing the circle in the upper left-

hand quadrant as a parameter. This causes the circle to be filled using the Color object discussed

in the previous fragment. This, in turn, causes the circle to be filled with the color red.

 g2.fill(circle1);

Figure 4

It’s time to render the circle

At this point, the red circle has not yet been rendered onto the screen. That happens in the Figure

5, which invokes the draw() method on the Graphics2D object, passing a reference to the red

circle as a parameter.

 g2.draw(circle1);

Figure 5

When the circle is rendered, those attributes that have previously been established in the

Graphics2D object (such as scaling, translation, rotation, etc.) will be used to render the circle.

Just for the record, recall that the draw() method requires a parameter that is a reference to an

object of a class that implements the Shape interface. The Ellipse2D.Double class, of which

this circle is an instance, is one of the geometric classes in the API that implements the Shape

interface.

It’s all downhill from here

Once you understand all of the above, the remainder of the program, shown in Figure 6, is

completely straightforward.

 //Upper right quadrant, Solid green fill

 Ellipse2D.Double circle2 =

 new Ellipse2D.Double(

 0.0*ds,-2.0*ds,2.0*ds,2.0*ds);

 g2.setPaint(new Color(0,255,0));//green

 g2.fill(circle2);

 g2.draw(circle2);

 //Lower left quadrant, Solid blue fill

 Ellipse2D.Double circle3 =

 new Ellipse2D.Double(

 -2.0*ds,0.0*ds,2.0*ds,2.0*ds);

 g2.setPaint(new Color(0,0,255));//blue

 g2.fill(circle3);

 g2.draw(circle3);

 //Lower right quadrant, Solid yellow fill

 Ellipse2D.Double circle4 =

 new Ellipse2D.Double(

 0.0*ds,0.0*ds,2.0*ds,2.0*ds);

 //yellow

 g2.setPaint(new Color(255,255,0));

 g2.fill(circle4);

 g2.draw(circle4);

Figure 6

This remaining code simply creates, fills, and draws three more circles in the remaining three

quadrants of the Frame. Except for variable names and parameter values, this code is the same

as that shown in the previous several fragments, so I will let the comments speak for themselves.

You can view a complete listing of the program at the end of the lesson.

Summary

I have explained the basics of how fill is handled in Java 2D, and have shown you how to

accomplish solid fill.

I will show you how to fill a Shape object with a color gradient, or with a BufferedImage object

in subsequent lessons.

Complete Program Listing

A complete listing of the program is provided in Figure 7.

/*PaintColor01.java 12/12/99
 Copyright 1999, R.G.Baldwin

 Illustrates use of a Paint object to fill a Shape with
 a solid color.

 Draws a 4-inch by 4-inch Frame on the screen.

 Translates the origin to the center of the Frame.

 Draws a pair of X and Y-axes centered on the
 new origin.

 Draws one 2-inch diameter circle in each quadrant.

 Fills upper left circle with solid red.
 Fills upper right circle with solid green
 Fills lower left circle with solid blue
 Fills lower right circle with solid yellow

 Whether the dimensions in inches come out right or not
 depends on whether the method getScreenResolution()
 returns the correct resolution for your screen.

 Tested using JDK 1.2.2 under WinNT Workstation 4.0
 ***/
 import java.awt.geom.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.image.*;

 class PaintColor01{
 publicstaticvoid main(String[] args){
 GUI guiObj = new GUI();
 }//end main
 }//end controlling class PaintColor01

 class GUI extends Frame{
 int res;//store screen resolution here
 staticfinalint ds = 72;//default scale, 72 units/inch
 staticfinalint hSize = 4;//horizonal size = 4 inches
 staticfinalint vSize = 4;//vertical size = 4 inches

 GUI(){//constructor
 //Get screen resolution
 res = Toolkit.getDefaultToolkit().
 getScreenResolution();
 //Set Frame size
 this.setSize(hSize*res,vSize*res);
 this.setVisible(true);
 this.setTitle("Copyright 1999, R.G.Baldwin");

 //Window listener to terminate program.
 this.addWindowListener(new WindowAdapter(){
 public void windowClosing(WindowEvent e){
 System.exit(0);}});
 }//end constructor
 //---//

 //Override the paint() method
 public void paint(Graphics g){
 //Downcast the Graphics object to a Graphics2D
 // object
 Graphics2D g2 = (Graphics2D)g;

 //Scale device space to produce inches on the
 //screen based on actual screen resolution.
 g2.scale((double)res/72,(double)res/72);

 //Translate origin to center of Frame
 g2.translate((hSize/2)*ds,(vSize/2)*ds);

 //Draw x-axis
 g2.draw(new Line2D.Double(
 -1.5*ds,0.0,1.5*ds,0.0));
 //Draw y-axis
 g2.draw(new Line2D.Double(
 0.0,-1.5*ds,0.0,1.5*ds));

 //Upper left quadrant, Solid red fill
 Ellipse2D.Double circle1 = new Ellipse2D.Double(
 -2.0*ds,-2.0*ds,2.0*ds,2.0*ds);
 g2.setPaint(new Color(255,0,0));//red
 g2.fill(circle1);
 g2.draw(circle1);

 //Upper right quadrant, Solid green fill
 Ellipse2D.Double circle2 = new Ellipse2D.Double(
 0.0*ds,-2.0*ds,2.0*ds,2.0*ds);
 g2.setPaint(new Color(0,255,0));//green
 g2.fill(circle2);
 g2.draw(circle2);

 //Lower left quadrant, Solid blue fill
 Ellipse2D.Double circle3 = new Ellipse2D.Double(
 -2.0*ds,0.0*ds,2.0*ds,2.0*ds);
 g2.setPaint(new Color(0,0,255));//blue
 g2.fill(circle3);
 g2.draw(circle3);

 //Lower right quadrant, Solid yellow fill
 Ellipse2D.Double circle4 = new Ellipse2D.Double(
 0.0*ds,0.0*ds,2.0*ds,2.0*ds);
 g2.setPaint(new Color(255,255,0));//yellow
 g2.fill(circle4);
 g2.draw(circle4);

 }//end overridden paint()

 }//end class GUI
 //================================//

Figure 7

Copyright 2000, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor and private consultant whose primary focus is a

combination of Java and XML. In addition to the many platform-independent benefits of Java

mailto:baldwin@austin.cc.tx.us

applications, he believes that a combination of Java and XML will become the primary driving

force in the delivery of structured information on the Web.

Richard has participated in numerous consulting projects involving Java, XML, or a

combination of the two. He frequently provides onsite Java and/or XML training at the high-

tech companies located in and around Austin, Texas. He is the author of Baldwin's Java

Programming Tutorials, which has gained a worldwide following among experienced and

aspiring Java programmers. He has also published articles on Java Programming in Java Pro

magazine.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

baldwin@austin.cc.tx.us

-end-

http://www.geocities.com/Athens/7077/scoop/onjava.html
mailto:baldwin@austin.cc.tx.us

