
Convolution and Frequency Filtering in Java

Learn how to take advantage of time-domain convolution for frequency filtering using Java.

Published: February 22, 2005

By Richard G. Baldwin

Java Programming, Notes # 1487

 Preface

 General Discussion

 Preview

 Sample Programs

 Run the Programs

 Summary

 What's Next?

 Complete Program Listings

Preface

Previous lessons in this series have taught you quite a lot about the use of Java for Digital Signal

Processing (DSP). For example, the lesson titled Spectrum Analysis using Java, Forward and

Inverse Transforms, Filtering in the Frequency Domain showed you how to perform frequency

filtering by:

 Transforming a time series into the frequency domain

 Modifying the spectrum in the frequency domain

 Transforming the modified spectrum back into the time domain

Introducing convolution

This lesson will show you another approach to digital filtering using Java. This approach is

known as convolution. With digital convolution, all operations are performed strictly in the time

domain. There is no requirement to transform into the frequency domain.

(The programs in this lesson will transform into the frequency domain, but that

will be done solely to show the results of filtering in the time domain.)

Viewing tip

You may find it useful to open another copy of this lesson in a separate browser window. That

will make it easier for you to scroll back and forth among the different figures and listings while

you are reading about them.

http://cnx.org/content/m49799/latest/?collection=col11642/latest
http://cnx.org/content/m49799/latest/?collection=col11642/latest

Supplementary material

I recommend that you also study the other lessons in my extensive collection of online Java

tutorials. You will find those lessons published at Gamelan.com. However, as of the date of this

writing, Gamelan doesn't maintain a consolidated index of my Java tutorial lessons, and

sometimes they are difficult to locate there. You will find a consolidated index at

www.DickBaldwin.com.

General Discussion

The purpose of this lesson is to help you understand the use of convolution for frequency

filtering. A future lesson will explain the use of convolution for matched filtering.

What is convolution?

I won't attempt to explain the theoretical basis for convolution. If you search the web using

Google, you will undoubtedly find numerous links to theoretical discussions of

convolution. Rather, I will explain and illustrate convolution in practical terms.

Computationally, convolution involves sliding one time series along another time series and

performing a very simple arithmetic operation at each registration point where the samples in the

two time series line up. We can refer to one of the time series as the data and the other as the

convolution operator, or simply operator.

Both time series must consist of samples taken at uniform intervals in time, and both must have

been sampled at the same sampling rate.

Another example of a sum of products

In several previous lessons, I have explained that one of the most common operations in DSP is

to multiply corresponding samples from two time series and to compute the sum of the

products. Convolution is no exception to that rule.

In convolution, the operator is matched up against corresponding samples in the data. Then the

sum of the products of the corresponding samples is computed. Sometimes that sum is divided

by some constant, such as the number of samples in the operator. The sum of the products,

possibly divided by a constant, represents one output value.

Then the operator is moved forward by one sample interval, and the sum of products operation is

repeated producing another output value.

This process continues, moving the operator forward one sample interval at a time and

computing the sum of products of corresponding samples until the operator reaches the end of

the data. One output sample is produced during each sum of products operation.

Flip the operator end-for-end

http://softwaredev.earthweb.com/java
http://www.dickbaldwin.com/
http://www.google.com/

For reasons that I won't go into, the operator must be flipped end-for-end before the process

begins. In other words, the sample in the operator that represents the oldest sample in time must

be the leading sample as the operator moves along the data.

End effects

As a practical matter, for digital data that has been captured, the data always has a beginning

point and an ending point. It is never quite clear how to handle the computational process at the

ends.

For example, the process could begin with the operator completely overlapping the data. The

process could end at the last point where the operator is completely overlapped with the

data. With this approach, the number of output values will always be less than the number of

samples in the data (unless the operator has only one sample, which is a trivial case).

Alternatively, the process could begin and/or end at the point where only one sample belonging

to the operator overlaps the first and/or last sample in the data. This will produce plenty of

output values, but the values computed with less than full overlap are subject to quality

concerns.

Probably the best approach is to make certain that you capture enough data that you can afford to

sacrifice some output values at the beginning and the end, and to preserve only those output

samples computed with a full overlap between the operator and the data.

A practical example

Consider the simple case where the operator consists of two samples each having a value of

+1. If you divide the sum of products by two when you convolve this operator with a time

series, you are in effect computing a running two-point average of the values in the time series.

(That is to say, each output value is the average of two successive samples in the

data. This is not a trivial case, but rather can be useful in some situations.)

Without explaining why, I will tell you that this has the effect of preserving low frequency

components and suppressing high-frequency components in the time series.

Another simple-two point operator

If one of the samples in a two-point operator has a value of +1 and the other sample has a value

of -1, the results will be completely different. This has the effect of preserving high-frequency

components and suppressing low-frequency components.

Preview

I will present and explain three programs in this lesson. The first program named Dsp039a

creates a convolution operator consisting of a short time series with a linear FM sweep. A

Fourier Transform algorithm and a utility plotting program named Graph03 are used to show

you the frequency response exhibited by that convolution operator.

(I have explained the use of the Fourier Transform for spectral analysis in several

previous lessons, which began with the lesson titled Fun with Java, How and Why

Spectral Analysis Works. The previous lesson was titled Fun with Java,

Understanding the Fast Fourier Transform (FFT) Algorithm.)

The second program named Dsp039b applies the same convolution operator to a time series

consisting of a sequence of equally spaced impulses. The Fourier Transform algorithm and the

plotting program are used to show you the spectral content of the time series before and after

convolution filtering. In other words, plots show the effect of the convolution operation both in

the time domain and in the frequency domain.

The third program named Dsp039c is similar to Dsp039b, except that it applies the convolution

filter to white noise and shows you the results in the time domain and in the frequency domain.

Sample Programs

The program named Graph03

The program named Graph03 is a utility plotting program from a series of programs first

discussed in the lesson titled Plotting Engineering and Scientific Data using Java. I will refer

you to that lesson for a detailed discussion of the concepts involved.

A listing of the program is provided in Listing 25 near the end of the lesson. Similarly, a listing

of a required interface named GraphIntfc01 is provided in Listing 26 near the end of the lesson.

The program named Dsp039a

As explained earlier, this series of programs illustrates the use of convolution for frequency

filtering.

The series consists of the following three programs:

 Dsp039a

 Dsp039b

 Dsp039c

The frequency response of a convolution operator

The program named Dsp039a computes and displays the frequency response of a convolution

operator consisting of a pulse with a linear frequency-modulated sweep and constant amplitude

across the length of the pulse.

http://cnx.org/content/m49794/latest/?collection=col11642/latest
http://cnx.org/content/m49794/latest/?collection=col11642/latest
http://cnx.org/content/m49801/latest/?collection=col11642/latest
http://cnx.org/content/m49801/latest/?collection=col11642/latest
http://cnx.org/content/m49795/latest/?collection=col11642/latest

The frequency modulation sweeps from 1000 HZ to 2000 HZ at an assumed sampling rate of

16000 samples per second.

(If a different sampling rate is assumed, the boundary frequencies at the ends of

the sweep will also be different.)

The program output

The top plot in Figure 1 shows the convolution operator. The bottom plot in Figure 1 shows the

frequency response of that operator.

Figure 1 Output from the program named

Dsp039a

Running the program

You can run this program by entering the following command at the command-line prompt.

java Graph03 Dsp039a

When run in this manner, the program requires access to the following program files, all of

which are provided near the end of the lesson:

 Dsp039a

 Graph03

 GraphIntfc01

The program was tested using JDK 1.4.2 under WinXP.

Discussion of the code for Dsp039a

The class definition for Dsp039a begins in Listing 1. Note that this class implements

GraphIntfc01. This is necessary to satisfy the requirements of the utility plotting program

named Graph03.

class Dsp039a implements GraphIntfc01{

 int operLen = 50;

 int windowLen = 400;

 int spectrumPts = windowLen - operLen;

Listing 1

The code in Listing 1 establishes:

 The length for the convolution operator

 A window that will be used in computing the frequency response of the operator

 The number of spectral points that will be computed to determine the frequency response

of the convolution operator

(The value specified for the number of spectral points may look a little strange at

this point. This value was chosen to be consistent with spectral analyses that will

be performed in the other two programs discussed later in this lesson.)

Create the arrays

The code in Listing 2 creates the arrays that will be used to store the window, the operator, and

the frequency response of the operator.

 double[] window = new double[windowLen];

 double[] operator = new double[operLen];

 double[] spectrumA = new double[spectrumPts];

Listing 2

The constructor

The constructor begins in Listing 3.

 public Dsp039a(){//constructor

 fmSweep(operLen,operator);

Listing 3

The code in Listing 3 invokes a method named fmSweep, which returns a time series that will be

used as a convolution operator.

The method named fmSweep

I will set the discussion of the constructor aside for a moment and discuss the method named

fmSweep.

As mentioned earlier, the top plot in Figure 1 shows the waveform of the time series produced by

this method.

As you can see from Figure 1, the waveform is sort of sinusoidal with the period decreasing, or

the frequency increasing as you move from left to right across the pulse.

(The fact that each of the peaks doesn't appear to be the same height is an artifact

of the sampling process. As you move to the right, some of the peaks fall in

between samples.)

The code for the fmSweep method

This method generates a pulse with a linear frequency sweep from 1000 Hz to 2000 Hz at an

assumed sampling rate of 16000 samples per second.

The code in Listing 4 declares and initializes some local variables. The names of these variables

should be sufficient to indicate their purpose.

 void fmSweep(int pulseLen,double[] output){

 double twoPI = 2*Math.PI;

 double sampleRate = 16000.0;

 double lowFreq = 1000.0;

 double highFreq = 2000.0;

Listing 4

Incoming parameters

The first parameter to the fmSweep method specifies the length of the desired pulse in samples.

The second parameter is a reference to an array of type double where the method is to deposit

the output.

Populate the output array

The code in Listing 5 computes the samples and stores them in the output array.

 for(int cnt = 0; cnt < pulseLen; cnt++){

 double time = cnt/sampleRate;

 double freq = lowFreq +

 cnt*(highFreq-lowFreq)/pulseLen;

 double sinValue =

 Math.sin(twoPI*freq*time);

 output[cnt] = sinValue;

 }//end for loop

 }//end method fmSweep

Listing 5

Now that you know what to look for, the code in Listing 5 shouldn't require a detailed

explanation. Once again, the sample values produced by this method are displayed in the top

plot in Figure 1.

Back to the constructor

Returning now to the discussion of the constructor, the code in Listing 6 adds the convolution

operator to a longer time series consisting of all zero values.

 for(int cnt = 0; cnt < operLen; cnt++){

 window[cnt] += operator[cnt];

 }//end for loop

Listing 6

This is done as a convenience for spectrum analysis. This makes it possible to use an existing

DFT algorithm, which computes the spectrum at a number of points equal to the length of the

data. This, in turn, causes the spectrum to be computed at a sufficient number of points to

produce a smooth spectral estimate. It also causes the plot of the spectral estimate to be

consistent with spectral plots produced by other programs in this lesson.

The code in Listing 6 is straightforward and shouldn't require further explanation.

Compute the frequency response

The code in Listing 7 invokes a Discrete Fourier Transform (DFT) method to compute the

frequency response of the convolution operator.

 Dft01.dft(window,spectrumPts,spectrumA);

Listing 7

The dft method receives references to two arrays and an integer value:

 An array containing the data to be transformed

 An array to receive the result of the spectral estimate

 The number of points in the frequency spectrum to be computed

Several previous lessons, including the lesson titled Spectrum Analysis using Java, Sampling

Frequency, Folding Frequency, and the FFT Algorithm, have discussed spectral analysis in

detail. Therefore, I won't discuss the method named dft in this lesson. You will find it in Listing

22 near the end of the lesson.

The output produced by the dft method is shown as the bottom plot in Figure 1.

End of the constructor

Listing 7 also signals the end of the constructor.

Graphic support methods

At this point, all of the data that is to be plotted for Dsp039a has been computed and saved in

arrays.

In order to be compatible with the plotting program named Graph03, this class implements the

interface named GraphIntfc01. That interface declares six methods named:

 getNmbr

 f1

 f2

 f3

 f4

 f5

Plotting from one to five curves

Referring back to Figure 1, you can see that two different curves were plotted in Figure 1. The

top curve is the convolution operator that I discussed earlier. The bottom curve is the frequency

response of the convolution operator that I will discuss shortly.

The program named Graph03 can plot from one to five curves in the same frame. The program

invokes the method named getNmbr to determine how many curves to plot. In this program, the

getNmbr method returned a value of 2, indicating that two curves should be plotted.

Getting the data to be plotted

Each of the methods named f1 through f5 supplies the data to be plotted in one of the five plots.

http://cnx.org/content/m49796/latest/?collection=col11642/latest
http://cnx.org/content/m49796/latest/?collection=col11642/latest

(For fewer than five plots, the methods having higher numbers in their names

aren't called. Once again, you can read about these concepts in the lesson titled

Plotting Engineering and Scientific Data using Java.)

For each curve that is to be plotted for this program, the Graph03 method calls the methods

named f1 or f2 repeatedly. Each time one of these method is called, it returns the next value that

is to be plotted.

The six interface methods

The implementation of each of the six interface methods is shown in Listing 8.

 //The following six methods are required by the

 // interface named GraphIntfc01.

 public int getNmbr(){

 //Return number of functions to process. Must

 // not exceed 5.

 //A return value of 2 causes two curves to be

 // plotted and also causes the last three of

 // the following five methods to be ignored

 // by the plotting program.

 return 2;

 }//end getNmbr

 //---//

 public double f1(double x){

 int index = (int)Math.round(x);

 //Return the convolution operator added to a

 // time series with all sample values equal

 // to zero.

 if(index < 0 || index > window.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return window[index] * 50.0;

 }//end else

 }//end f1

 //---//

 public double f2(double x){

 //Return the spectral response of the

 // convolution operator.

 int index = (int)Math.round(x);

 if(index < 0 || index > spectrumA.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return spectrumA[index] * 7.0;

 }//end else

 }//end f2

 //---//

http://cnx.org/content/m49795/latest/?collection=col11642/latest

 public double f3(double x){

 return 0.0;

 }//end f3

 //---//

 public double f4(double x){

 return 0.0;

 }//end f4

 //---//

 public double f5(double x){

 return 0.0;

 }//end f5

Listing 8

The general discussion above along with the comments in Listing 8 should suffice, and it should

not be necessary for me to discuss these methods further in this lesson.

Scaling the data for plotting

It is important to note, however, that the methods named f1 and f2 apply a scale factor to the data

samples before returning them.

(This will also be true of the methods named f3, f4, and f5 in the remaining two

programs in this lesson.)

The purpose of the scale factor is to cause all of the plots in the frame to have approximately the

same range. Otherwise, some plots would be too large to fit in the allowable space while others

would be so small as to make it impossible to see any detail.

The frequency response of the convolution operator

Now please turn your attention to the bottom plot in Figure 1. This is a plot of the frequency

response of the convolution filter shown in the top plot.

What do I mean by frequency response?

If a time series is filtered by convolving it with this operator, the spectral content of the filtered

time series will be the product of the original spectral content of the time series and the spectral

content shown by the bottom plot in Figure 1.

Format of Figure 1

The bottom plot in Figure 1 shows the spectral content of the convolution operator from a

frequency of zero on the left to a frequency equal to the sampling frequency about half way

between the seventeenth and eighteenth tick marks on the right.

The Nyquist folding frequency

The Nyquist folding frequency occurs at a point in the plot that is half the sampling frequency.

(See the lesson titled Spectrum Analysis using Java, Sampling Frequency, Folding

Frequency, and the FFT Algorithm for a detailed discussion of the Nyquist

folding frequency.)

Spectral values above the folding frequency are a mirror image of the values below the folding

frequency. Therefore, you can concentrate on those values below the folding frequency and

ignore the values above the folding frequency.

Discussion of the frequency response

As you can see, frequencies between the third tick mark and the folding frequency will be

strongly suppressed because the response is near zero at these frequencies.

(When the spectral content values of a time series are multiplied by these values,

the result will be near zero.)

Similarly, frequencies below the first tick mark will also be suppressed for the same reason.

Frequencies closely surrounding the second tick mark will be preserved because the response of

the convolution operator at these frequencies is high.

We will see examples of the suppression of some frequency components and the preservation of

other frequency components later when we apply this convolution operator to time series having

strong frequency components all the way from zero to the folding frequency.

The program named Dsp039b

As you have just learned, the program named Dsp039a illustrates the frequency response of a

particular convolution filter.

The program named Dsp039b illustrates the result of applying that convolution filter to a time

series consisting of a series of equally spaced impulses.

Dsp039c, which I will discuss later, illustrates the result of applying the same convolution filter

to a time series consisting of white noise.

Running the program

You can run this program by entering the following command at the command-line prompt:

java Graph03 Dsp039b

http://cnx.org/content/m49796/latest/?collection=col11642/latest
http://cnx.org/content/m49796/latest/?collection=col11642/latest

The program was tested using JDK 1.4.2 under WinXP.

The program output

This program, in combination with the program named Graph03, displays five different plots as

shown in Figure 2.

Figure 2 Output from the program named

Dsp039b.

Proceeding from top to bottom, the five plots shown in Figure 2 are:

 The time series that constitutes the raw data to be filtered

 The convolution operator

 The time series produced by applying the convolution operator to the raw data

 The spectrum of the raw data

 The spectrum of the time series produced by convolving the raw data with the

convolution operator

The bottom line

Compare the bottom two plots in Figure 2. Imagine the spectral values for the raw data plot

being multiplied by the frequency response of the convolution operator shown in Figure 1.

As described earlier, frequency components near the second tick mark are preserved in the

output spectrum in the bottom plot in Figure 2. Frequency components below the first tick mark

and frequency components above the third tick mark are strongly suppressed.

Discussion of the code for Dsp039b

The class definition for Dsp039b begins in Listing 9.

class Dsp039b implements GraphIntfc01{

 int operLen = 50;

 int dataLen = 400;

 int outputLen = dataLen - operLen;

 int spectrumPts = outputLen;

Listing 9

This program begins in a way that is very similar to the previous program. Listing 9 declares

and initializes some instance variables. The values stored in these variables will be used later.

Create the arrays

Listing 10 creates several empty arrays. These arrays will be used for intermediate data storage,

and to save the program output for plotting.

 double[] data = new double[dataLen];

 double[] operator = new double[operLen];

 double[] output = new double[outputLen];

 double[] spectrumA = new double[spectrumPts];

 double[] spectrumB = new double[spectrumPts];

Listing 10

Generate the input data

The constructor begins in Listing 11.

 public Dsp039b(){//constructor

 for(int cnt = 0;cnt < dataLen;cnt++){

 if(cnt%25 == 0)data[cnt] = 1;

 }//end for loop

Listing 11

Listing 11 generates and saves an input time series consisting of a series of equally spaced

impulses. Every twenty-fifth sample in the time series has a value of one. All other samples

have a value of zero.

This time series is shown in the top plot of Figure 2.

The convolution operator

Listing 12 creates and saves the same convolution operator that was discussed in the previous

program named Dsp039a.

 fmSweep(operLen,operator);

Listing 12

The convolution operator is shown in the second plot in Figure 2.

Perform the convolution

Listing 13 applies the convolution operator to the data causing the result of the convolution to

be saved in the array referred to by output.

 Convolve01.convolve(data,operator,output);

Listing 13

The method named convolve

At this point, I will set the discussion of the constructor aside temporarily and explain the

method named convolve.

Listing 14 shows the beginning of a class named Convolve01.

class Convolve01{

 public static void convolve(double[] data,

 double[] operator,

 double[] output){

Listing 14

The Convolve01 class provides a static method named convolve, which applies an incoming

convolution operator to an incoming set of data, and deposits the filtered result in an output array

whose reference is received as an incoming parameter.

The convolution loop

Listing 15 applies the convolution operator to the data, dealing with the requirement to flip the

convolution operator end-for-end.

 int dataLen = data.length;

 int operatorLen = operator.length;

 for(int i = 0;i < dataLen-operatorLen;i++){

 output[i] = 0;

 for(int j = operatorLen-1;j >= 0;j--){

 output[i] += data[i+j]*operator[j];

 }//end inner loop

 }//end outer loop

 }//end convolve method

}//end Class Convolve01

Listing 15

Please refer back to the section in this lesson titled "What is convolution?" as you examine the

code in Listing 15.

You should be able to see how the code in Listing 15 slides the convolution operator across the

data, progressing one sample interval at a time, and computing the sum of products for each

registration of convolution samples and data samples.

The convolution output

The output time series produced by the convolution operation is shown in the third plot in Figure

2. This plot shows the result of filtering the input data in the first plot with the convolution

operator in the second plot.

Compute the raw data spectrum

Returning now to the constructor, the code in Listing 16 uses the dft method discussed earlier to

compute the spectrum of the raw data.

 Dft01.dft(data,spectrumPts,spectrumA);

Listing 16

The spectral estimate for the raw data is saved in the array referred to by spectrumA, and is

plotted in the fourth plot in Figure 2.

As you can see, the spectral content of the series of equally spaced impulses in the time domain

is a series of equally spaced frequency components each having equal strength.

Compute the filtered data spectrum

Listing 17 invokes the dft method to estimate the spectral content of the filtered data and saves

the results in an array referred to by spectrumB.

 Dft01.dft(output,spectrumPts,spectrumB);

Listing 17

The spectral estimate of the filtered data is shown in the bottom plot in Figure 2.

As discussed earlier, the spectral content of the filtered data is given by the product of the

spectral content of the raw data and the frequency response of the convolution operator shown in

Figure 1.

Frequency components at and surrounding the second tick mark are preserved, while frequency

components below the first tick mark and above the third tick mark are suppressed.

The interface methods

The six interface methods, which specify the number of plots, and return the data for plotting, are

shown in Listing 18.

 //The following six methods are required by the

 // interface named GraphIntfc01.

 public int getNmbr(){

 //Return number of functions to process. Must

 // not exceed 5.

 return 5;

 }//end getNmbr

 //---//

 public double f1(double x){

 int index = (int)Math.round(x);

 //This method returns the raw data values.

 if(index < 0 || index > data.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return data[index] * 90.0;

 }//end else

 }//end f1

 //---//

 public double f2(double x){

 //Return the convolution operator

 int index = (int)Math.round(x);

 if(index < 0 || index > operator.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return operator[index] * 90.0;

 }//end else

 }//end f2

 //---//

 public double f3(double x){

 //Return convolution output

 int index = (int)Math.round(x);

 if(index < 0 || index > output.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return output[index] * 50.0;

 }//end else

 }//end f3

 //---//

 public double f4(double x){

 //Return spectrum of the raw data

 int index = (int)Math.round(x);

 if(index < 0 || index > spectrumA.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return spectrumA[index] * 5.0;

 }//end else

 }//end f4

 //---//

 public double f5(double x){

 //Return the spectrum of the filtered data

 int index = (int)Math.round(x);

 if(index < 0 || index > spectrumB.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return spectrumB[index]*0.60;

 }//end else

 }//end f5

Listing 18

These methods are straightforward and won't be discussed further.

The fmSweep and dft methods

The methods named fmSweep and dft are identical to the methods having the same name used in

the program named Dsp039a. These methods can be viewed in Listing 23 near the end of the

lesson.

The program named Dsp039c

The program named Dsp039a illustrates the frequency response of a convolution filter.

The program named Dsp039b illustrates the result of applying that convolution filter to a time

series consisting of a series of equally spaced impulses.

This program, named Dsp039c illustrates the result of applying that same convolution filter to a

time series consisting of white noise.

What is white noise?

The term white noise comes from the term white light. Theoretically, white light, as emitted by

the sun, contains an equal distribution of energy at all wavelengths in the visible spectrum. If

you apply an optical filter such as a piece of translucent red glass, much of the energy will be

removed, leaving only the wavelengths in the red end of the spectrum.

The term white noise applies to noise that theoretically contains an equal distribution of energy

at all frequencies. A good approximation of white noise in the world of sampled data is a series

of values taken from a random number generator.

The reality of short samples

In reality, no finite length sample of random numbers contains an equal distribution of energy at

all frequencies between zero and the folding frequency.

The spectral content of one series of random numbers will exhibit one shape, and the spectral

content of another series of random numbers will exhibit a different shape.

(On average, the spectral content of a large number of such series of random

numbers will approximate an equal distribution of energy at all frequencies

between zero and the folding frequency.)

The longer the sample, however, the closer will be the approximation to an equal distribution of

energy at all frequencies between zero and the folding frequency.

When you run this program, you will see the spectral content of a series of 400 random

numbers. Each time you run the program, you will see the spectral content of a different series

of 400 random numbers taken from the same random number generator.

Running the program

You can run this program by entering the following command at the command-line prompt:

java Graph03 Dsp039c

This program was tested using JDK 1.4.2 under WinXP.

The program output

The program output for one such run is shown in Figure 3.

Figure 3 Output from the program named

Dsp039c

Going from top to bottom, the five plots show:

 The raw data consisting of 400 random numbers

 The same convolution operator used in the previous two programs

 The time domain result of applying the convolution filter to the raw data

 The spectral content of the raw data from zero to the sampling frequency. Note the

symmetry about the folding frequency slightly to the left of the ninth tick mark.

 The spectral content of the filtered data from zero to the sampling frequency. Also note

the symmetry about the folding frequency.

The bottom line

If you compare the filtered output in the third plot with the raw data in the first plot, you can see

that the filtered output is richer in terms of low-frequency components. This is consistent with

the frequency response of the convolution operator shown in Figure 1. That filter tends to

preserve low-frequency components and to suppress high-frequency components.

Also, if you compare the bottom two plots in Figure 3, you can imagine that the shape of the

bottom plot is an approximation of the product of the spectral content of the raw data and the

frequency response of the convolution operator shown in Figure 1.

Since the frequency response is not flat, the spectral content in the area of the second tick mark

doesn't look exactly like the spectral content of the raw data in that same area. However, as

before, the energy was preserved in the area surrounding the second tick mark. Energy below

the first tick mark and energy above the third tick mark was suppressed.

Discussion of the code for Dsp039c

The class definition for Dsp039c begins in Listing 19.

class Dsp039c implements GraphIntfc01{

 //Establish length for operator, data, and

 // spectrum

 int operLen = 50;

 int dataLen = 400;

 int outputLen = dataLen - operLen;

 int spectrumPts = outputLen;

 //Create arrays for the data and the results.

 double[] data = new double[dataLen];

 double[] operator = new double[operLen];

 double[] output = new double[outputLen];

 double[] spectrumA = new double[spectrumPts];

 double[] spectrumB = new double[spectrumPts];

Listing 19

This program is very similar to the program named Dsp039b. The only real difference has to do

with the source of the raw data.

The code in Listing 19 is essentially the same as the code presented earlier in Listings 10 and 11.

Generate the white noise

The constructor begins in Listing 20.

 public Dsp039c(){//constructor

 Random generator = new Random(

 new Date().getTime());

 for(int cnt=0;cnt < data.length;cnt++){

 data[cnt] =

 2.0*(generator.nextDouble() - 0.5);

 }//end for loop

Listing 20

Listing 20 contains the code to use a random number generator to get and save 400 random

numbers. I will refer you to the Sun documentation and the class named Random if you need to

know more about using that class to get random numbers.

A different seed for each run

The random number generator uses a seed as input when it generates the set of random

numbers. If two or more sets of random numbers are generated using the same seed, the values

of the random numbers will be the same.

If two or more sets of random numbers are generated using different seeds, the values in the two

sets of numbers will be different, and the numbers will be random with respect to one another.

(This implies that the cross-correlation between the two sets of values is very low,

but cross-correlation is a DSP topic for a different lesson.)

Use the time as a seed

Listing 20 gets the date and time in milliseconds, relative to January 1, 1970, and uses that value

as a seed each time the program is run. Therefore, unless it is possible to run the program twice

within one millisecond, there is no way that two different runs of the program can produce the

same set of random numbers.

Eliminate the bias and scale the value

Each random number produced by the method named nextDouble in Listing 20 has a value

uniformly distributed between 0 and 1.0. Hence, the average value of the random numbers is

0.5.

The code in Listing 20 subtracts 0.5 from each random number to cause the values to be

distributed between negative 0.5 and positive 0.5. Then those values are multiplied by 2.0 to

cause the values to be distributed between negative 1.0 and positive 1.0. This is what you see in

the first plot in Figure 3 (except that each value has been multiplied by 50.0 in method f1 to

bring it into a good plotting range).

The remaining code

The remaining code in the constructor is shown in Listing 21.

 //Create a convolution operator.

 fmSweep(operLen,operator);

 //Apply the convolution operator to the white

 // noise.

 Convolve01.convolve(data,operator,output);

 //Compute DFT of the raw white noise. Save it

 // in spectrumA array.

 Dft01.dft(data,spectrumPts,spectrumA);

 //Compute DFT of the filtered white noise and

 // save it in spectrumB array.

 Dft01.dft(output,spectrumPts,

 spectrumB);

 }//end constructor

Listing 21

The code in Listing 21 accomplishes the following:

 Create a convolution operator whose frequency response matches that shown in Figure 1.

 Convolve the operator with the raw white-noise data.

 Estimate the spectral content of the raw data.

 Estimate the spectral content of the filtered version of the raw data.

This code is essentially the same as the code discussed in conjunction with the program named

Dsp039b, so I won't discuss it further here.

The six interface methods

The implementation of the six interface methods in the program named Dsp039c is shown in

Listing 22.

 //The following six methods are required by the

 // interface named GraphIntfc01.

 public int getNmbr(){

 //Return number of functions to process. Must

 // not exceed 5.

 return 5;

 }//end getNmbr

 //---//

 public double f1(double x){

 int index = (int)Math.round(x);

 //This method returns the raw white noise.

 if(index < 0 || index > data.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return data[index] * 50.0;

 }//end else

 }//end f1

 //---//

 public double f2(double x){

 //Return the convolution operator

 int index = (int)Math.round(x);

 if(index < 0 || index > operator.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return operator[index] * 50.0;

 }//end else

 }//end f2

 //---//

 public double f3(double x){

 //Return the filtered noise

 int index = (int)Math.round(x);

 if(index < 0 || index > output.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return output[index] * 7.0;

 }//end else

 }//end f3

 //---//

 public double f4(double x){

 //Return spectrum of raw white noise

 int index = (int)Math.round(x);

 if(index < 0 || index > spectrumA.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return spectrumA[index] * 4.0;

 }//end else

 }//end f4

 //---//

 public double f5(double x){

 //Return the spectrum of the filtered white

 // noise.

 int index = (int)Math.round(x);

 if(index < 0 || index > spectrumB.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return spectrumB[index]*0.4;

 }//end else

 }//end f5

Listing 22

With the exception of the need for different scale factors to adjust the values for plotting, the

methods in Listing 22 are the same as the methods having the same names in Listing

18. Therefore, I won't discuss them further.

The fmSweep, convolve, and dft methods

These methods are identical to the methods having the same names in the program named

Dsp039b. Therefore, I won't discuss them further. You can view these methods in Listing 24

near the end of the lesson.

Run the Programs

I encourage you to copy, compile, and run the programs that you will find in the listings near the

end of the lesson. Modify them and experiment with them in order to learn as much as you can

about the use of convolution for frequency filtering.

For example, you might want to create and use different convolution operators, such as the two-

point operators discussed earlier in the lesson.

Summary

In this lesson, I have explained and illustrated the use of time-domain convolution for frequency

filtering.

What's next?

In the next lesson, I will explain and illustrate the use of convolution for a significantly different

purpose known commonly as matched filtering.

Complete Program Listings

A complete listing of each of the programs is provided in below.

/* File Dsp039a.java

Copyright 2005, R.G.Baldwin

This series of programs illustrates the use of

convolution for frequency filtering.

The series consists of the following three

programs:

Dsp039a

Dsp039b

Dsp039c

A future program will illustrate the use of

convolution for matched filtering.

This program computes and displays the response

of a convolution operator consisting of a pulse

with a linear frequency-modulated sweep and

constant amplitude across the length of the

pulse.

The frequency modulation sweeps from 1000 HZ to

2000 HZ at an assumed sampling rate of 16000

samples per second.

Dsp039b illustrates the result of applying the

convolution filter to a time series consisting of

a series of equally-spaced impulses.

Dsp039c illustrates the result of applying the

convolution filter to a time series consisting of

white noise.

Run this program by entering the following

command at the command-line prompt.

java Graph03 Dsp039a

When run in this manner, the program requires

access to the following program files:

Graph03.java

GraphIntfc01

Tested using JDK 1.4.2 under WinXP.

**/

import java.util.*;

class Dsp039a implements GraphIntfc01{

 //Establish length for operator, window, and

 // spectrum

 int operLen = 50;

 int windowLen = 400;

 //Compute the spectrum at the number of points

 // defined in the following variable so that

 // the spectral plot will beconsistent with the

 // spectral plots produced by other programs in

 // this series.

 int spectrumPts = windowLen - operLen;

 //Create arrays for the window, the convolution

 // operator, and the spectrum

 double[] window = new double[windowLen];

 double[] operator = new double[operLen];

 double[] spectrumA = new double[spectrumPts];

 public Dsp039a(){//constructor

 //Create and save a convolution operator

 // consisting of a linear FM pulse.

 fmSweep(operLen,operator);

 //Add the convolution operator to a time

 // series consisting of all zero values.

 // This is done as a convenience for spectrum

 // analysis. This makes it possible to use

 // an existing DFT algorithm that computes

 // the spectrum at a number of points equal

 // to the length of the data. This, in turn,

 // causes the spectrum to be computed at a

 // sufficient number of points to produce a

 // smooth spectral estimate. It also causes

 // the plot of the spectral estimate to be

 // consistent with spectral plots produced

 // by other programs in this series.

 for(int cnt = 0; cnt < operLen; cnt++){

 window[cnt] += operator[cnt];

 }//end for loop

 //Compute the frequency response of the

 // convolution operator.

 Dft01.dft(window,spectrumPts,spectrumA);

 //All of the time series have now been

 // produced and saved. They may be

 // retrieved and plotted by invoking the

 // methods named f1 and f2.

 }//end constructor

 //---//

 //The following six methods are required by the

 // interface named GraphIntfc01.

 public int getNmbr(){

 //Return number of functions to process. Must

 // not exceed 5.

 //A return value of 2 causes two curves to be

 // plotted and also causes the last three of

 // the following five methods to be ignored

 // by the plotting program.

 return 2;

 }//end getNmbr

 //---//

 public double f1(double x){

 int index = (int)Math.round(x);

 //Return the convolution operator added to a

 // time series with all sample values equal

 // to zero.

 if(index < 0 || index > window.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return window[index] * 50.0;

 }//end else

 }//end f1

 //---//

 public double f2(double x){

 //Return the spectral response of the

 // convolution operator.

 int index = (int)Math.round(x);

 if(index < 0 || index > spectrumA.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return spectrumA[index] * 7.0;

 }//end else

 }//end f2

 //---//

 public double f3(double x){

 return 0.0;

 }//end f3

 //---//

 public double f4(double x){

 return 0.0;

 }//end f4

 //---//

 public double f5(double x){

 return 0.0;

 }//end f5

 //---//

 //This method generates a pulse with a linear

 // frequency sweep from 1000 Hz to 2000 Hz at

 // a sampling rate of 16000 samples per

 // second.

 void fmSweep(int pulseLen,double[] output){

 double twoPI = 2*Math.PI;

 double sampleRate = 16000.0;

 double lowFreq = 1000.0;

 double highFreq = 2000.0;

 for(int cnt = 0; cnt < pulseLen; cnt++){

 double time = cnt/sampleRate;

 double freq = lowFreq +

 cnt*(highFreq-lowFreq)/pulseLen;

 double sinValue =

 Math.sin(twoPI*freq*time);

 output[cnt] = sinValue;

 }//end for loop

 }//end method fmSweep

}//end class Dsp039a

//===//

//This class provides a static method named dft,

// which computes and returns the amplitude

// spectrum of an incoming time series. The

// amplitude spectrum is computed as the square

// root of the sum of the squares of the real and

// imaginary parts.

//Returns a number of points in the frequency

// domain equal to the number of samples in the

// incoming time series. This is for convenience

// only and is not a requirement of a DFT.

//Deposits the frequency data in an array whose

// reference is received as an incoming

// parameter.

class Dft01{

 public static void dft(double[] data,

 int dataLen,

 double[] spectrum){

 double twoPI = 2*Math.PI;

 //Set the frequency increment to the

 // reciprocal of the data length. This is

 // convenience only, and is not a requirement

 // of the DFT algorithm.

 double delF = 1.0/dataLen;

 //Outer loop iterates on frequency values.

 for(int i = 0; i < dataLen;i++){

 double freq = i*delF;

 double real = 0;

 double imag = 0;

 //Inner loop iterates on time- series

 // points.

 for(int j=0; j < dataLen; j++){

 real += data[j]*Math.cos(twoPI*freq*j);

 imag += data[j]*Math.sin(twoPI*freq*j);

 spectrum[i] = Math.sqrt(

 real*real + imag*imag);

 }//end inner loop

 }//end outer loop

 }//end dft

}//end Dft01

Listing 22

/* File Dsp039b.java

Copyright 2005, R.G.Baldwin

This series of programs illustrates the use of

convolution for frequency filtering.

The series consists of the following three

programs:

Dsp039a

Dsp039b

Dsp039c

A future program will illustrate the use of

convolution for matched filtering.

Dsp039a illustrates the frequency response of a

convolution filter.

This program shows the result of applying that

convolution filter to a time series consisting

of a series of equally-spaced impulses.

Dsp039c illustrates the result of applying the

convolution filter to a time series consisting of

white noise.

Run this program by entering the following

command at the command-line prompt:

java Graph03 Dsp039b

Tested using JDK 1.4.2 under WinXP.

**/

import java.util.*;

class Dsp039b implements GraphIntfc01{

 //Establish length for operator, data, and

 // spectrum

 int operLen = 50;

 int dataLen = 400;

 int outputLen = dataLen - operLen;

 int spectrumPts = outputLen;

 //Create arrays for the data and the results.

 double[] data = new double[dataLen];

 double[] operator = new double[operLen];

 double[] output = new double[outputLen];

 double[] spectrumA = new double[spectrumPts];

 double[] spectrumB = new double[spectrumPts];

 public Dsp039b(){//constructor

 //Generate some wide-band data consisting of

 // a series of equally-spaced impulses

 for(int cnt = 0;cnt < dataLen;cnt++){

 if(cnt%25 == 0)data[cnt] = 1;

 }//end for loop

 //Create and save a convolution operator

 fmSweep(operLen,operator);

 //Apply the convolution operator to the data.

 Convolve01.convolve(data,operator,output);

 //Compute DFT of raw data and save it in

 // spectrumA array.

 Dft01.dft(data,spectrumPts,spectrumA);

 //Compute DFT of the filtered data and save

 // it in spectrumB array.

 Dft01.dft(output,spectrumPts,spectrumB);

 //All of the time series have now been

 // produced and saved. They may be

 // retrieved and plotted by invoking the

 // methods named f1 through f5.

 }//end constructor

 //---//

 //The following six methods are required by the

 // interface named GraphIntfc01.

 public int getNmbr(){

 //Return number of functions to process. Must

 // not exceed 5.

 return 5;

 }//end getNmbr

 //---//

 public double f1(double x){

 int index = (int)Math.round(x);

 //This method returns the raw data values.

 if(index < 0 || index > data.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return data[index] * 90.0;

 }//end else

 }//end f1

 //---//

 public double f2(double x){

 //Return the convolution operator

 int index = (int)Math.round(x);

 if(index < 0 || index > operator.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return operator[index] * 90.0;

 }//end else

 }//end f2

 //---//

 public double f3(double x){

 //Return convolution output

 int index = (int)Math.round(x);

 if(index < 0 || index > output.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return output[index] * 50.0;

 }//end else

 }//end f3

 //---//

 public double f4(double x){

 //Return spectrum of the raw data

 int index = (int)Math.round(x);

 if(index < 0 || index > spectrumA.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return spectrumA[index] * 5.0;

 }//end else

 }//end f4

 //---//

 public double f5(double x){

 //Return the spectrum of the filtered data

 int index = (int)Math.round(x);

 if(index < 0 || index > spectrumB.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return spectrumB[index]*0.60;

 }//end else

 }//end f5

 //---//

 //This method generates a pulse with a linear

 // frequency sweep from 1000 Hz to 2000Hz at

 // a sampling rate of 16000 samples per

 // second.

 void fmSweep(int pulseLen,double[] output){

 double twoPI = 2*Math.PI;

 double sampleRate = 16000.0;

 double lowFreq = 1000.0;

 double highFreq = 2000.0;

 for(int cnt = 0; cnt < pulseLen; cnt++){

 double time = cnt/sampleRate;

 double freq = lowFreq +

 cnt*(highFreq-lowFreq)/pulseLen;

 double sinValue =

 Math.sin(twoPI*freq*time);

 output[cnt] = sinValue;

 }//end for loop

 }//end method fmSweep

}//end class Dsp039b

//===//

//This class provides a static method named

// convolve, which applies an incoming

// convolution operator to an incoming set of

// data and deposits the filtered data in an

// output array whose reference is received as an

// incoming parameter.

class Convolve01{

 public static void convolve(double[] data,

 double[] operator,

 double[] output){

 //Apply the operator to the data, dealing

 // with the index reversal required by

 // convolution.

 int dataLen = data.length;

 int operatorLen = operator.length;

 for(int i = 0;i < dataLen-operatorLen;i++){

 output[i] = 0;

 for(int j = operatorLen-1;j >= 0;j--){

 output[i] += data[i+j]*operator[j];

 }//end inner loop

 }//end outer loop

 }//end convolve method

}//end Class Convolve01

//===//

//This class provides a static method named dft,

// which computes and returns the amplitude

// spectrum of an incoming time series. The

// amplitude spectrum is computed as the square

// root of the sum of the squares of the real and

// imaginary parts.

//Returns a number of points in the frequency

// domain equal to the number of samples in the

// incoming time series. This is for convenience

// only and is not a requirement of a DFT.

//Deposits the frequency data in an array whose

// reference is received as an incoming

// parameter.

class Dft01{

 public static void dft(double[] data,

 int dataLen,

 double[] spectrum){

 double twoPI = 2*Math.PI;

 //Set the frequency increment to the

 // reciprocal of the data length. This is

 // convenience only, and is not a requirement

 // of the DFT algorithm.

 double delF = 1.0/dataLen;

 //Outer loop iterates on frequency values.

 for(int i = 0; i < dataLen;i++){

 double freq = i*delF;

 double real = 0;

 double imag = 0;

 //Inner loop iterates on time- series

 // points.

 for(int j=0; j < dataLen; j++){

 real += data[j]*Math.cos(twoPI*freq*j);

 imag += data[j]*Math.sin(twoPI*freq*j);

 spectrum[i] = Math.sqrt(

 real*real + imag*imag);

 }//end inner loop

 }//end outer loop

 }//end dft

}//end Dft01

Listing 23

/* File Dsp039c.java

Copyright 2005, R.G.Baldwin

This series of programs illustrates the use of

convolution for frequency filtering.

The series consists of the following three

programs:

Dsp039a

Dsp039b

Dsp039c

A future program will illustrate the use of

convolution for matched filtering.

Dsp039a illustrates the frequency response of a

convolution filter.

Dsp039b illustrates the result of applying that

convolution filter to a time series consisting of

a series of equally-spaced impulses.

This program illustrates the result of applying

that convolution filter to a time series

consisting of white noise.

Run this program by entering the following

command at the command-line prompt:

java Graph03 Dsp039c

Tested using JDK 1.4.2 under WinXP.

**/

import java.util.*;

class Dsp039c implements GraphIntfc01{

 //Establish length for operator, data, and

 // spectrum

 int operLen = 50;

 int dataLen = 400;

 int outputLen = dataLen - operLen;

 int spectrumPts = outputLen;

 //Create arrays for the data and the results.

 double[] data = new double[dataLen];

 double[] operator = new double[operLen];

 double[] output = new double[outputLen];

 double[] spectrumA = new double[spectrumPts];

 double[] spectrumB = new double[spectrumPts];

 public Dsp039c(){//constructor

 //Generate and save some wide-band white

 // noise. Seed with a different value each

 // time the object is constructed.

 Random generator = new Random(

 new Date().getTime());

 for(int cnt=0;cnt <

 data.length;cnt++){

 //Get noise, remove the dc-offset, scale

 // it to maximum peak value of 1.0, and

 // save it.

 data[cnt] =

 2.0*(generator.nextDouble() - 0.5);

 }//end for loop

 //Create a convolution operator.

 fmSweep(operLen,operator);

 //Apply the convolution operator to the white

 // noise.

 Convolve01.convolve(data,operator,output);

 //Compute DFT of the raw white noise. Save it

 // in spectrumA array.

 Dft01.dft(data,spectrumPts,spectrumA);

 //Compute DFT of the filtered white noise and

 // save it in spectrumB array.

 Dft01.dft(output,spectrumPts,

 spectrumB);

 //All of the time series have now been

 // produced and saved. They may be

 // retrieved and plotted by invoking the

 // methods named f1 through f5.

 }//end constructor

 //---//

 //The following six methods are required by the

 // interface named GraphIntfc01.

 public int getNmbr(){

 //Return number of functions to process. Must

 // not exceed 5.

 return 5;

 }//end getNmbr

 //---//

 public double f1(double x){

 int index = (int)Math.round(x);

 //This method returns the raw white noise.

 if(index < 0 || index > data.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return data[index] * 50.0;

 }//end else

 }//end f1

 //---//

 public double f2(double x){

 //Return the convolution operator

 int index = (int)Math.round(x);

 if(index < 0 || index > operator.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return operator[index] * 50.0;

 }//end else

 }//end f2

 //---//

 public double f3(double x){

 //Return the filtered noise

 int index = (int)Math.round(x);

 if(index < 0 || index > output.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return output[index] * 7.0;

 }//end else

 }//end f3

 //---//

 public double f4(double x){

 //Return spectrum of raw white noise

 int index = (int)Math.round(x);

 if(index < 0 || index > spectrumA.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return spectrumA[index] * 4.0;

 }//end else

 }//end f4

 //---//

 public double f5(double x){

 //Return the spectrum of the filtered white

 // noise.

 int index = (int)Math.round(x);

 if(index < 0 || index > spectrumB.length-1){

 return 0;

 }else{

 //Scale for display and return.

 return spectrumB[index]*0.4;

 }//end else

 }//end f5

 //---//

 //This method generates a pulse with a linear

 // frequency sweep from 1000 Hz to 2000Hz at

 // a sampling rate of 16000 samples per

 // second.

 void fmSweep(int pulseLen,double[] output){

 double twoPI = 2*Math.PI;

 double sampleRate = 16000.0;

 double lowFreq = 1000.0;

 double highFreq = 2000.0;

 for(int cnt = 0; cnt < pulseLen; cnt++){

 double time = cnt/sampleRate;

 double freq = lowFreq +

 cnt*(highFreq-lowFreq)/pulseLen;

 double sinValue =

 Math.sin(twoPI*freq*time);

 output[cnt] = sinValue;

 }//end for loop

 }//end method fmSweep

}//end class Dsp039c

//===//

//This class provides a static method named

// convolve, which applies an incoming

// convolution operator to an incoming set of

// data and deposits the filtered data in an

// output array whose reference is received as an

// incoming parameter.

class Convolve01{

 public static void convolve(double[] data,

 double[] operator,

 double[] output){

 //Apply the operator to the data, dealing

 // with the index reversal required by

 // convolution.

 int dataLen = data.length;

 int operatorLen = operator.length;

 for(int i = 0;i < dataLen-operatorLen;i++){

 output[i] = 0;

 for(int j = operatorLen-1;j >= 0;j--){

 output[i] += data[i+j]*operator[j];

 }//end inner loop

 }//end outer loop

 }//end convolve method

}//end Class Convolve01

//===//

//This class provides a static method named dft,

// which computes and returns the amplitude

// spectrum of an incoming time series. The

// amplitude spectrum is computed as the square

// root of the sum of the squares of the real and

// imaginary parts.

//Returns a number of points in the frequency

// domain equal to the number of samples in the

// incoming time series. This is for convenience

// only and is not a requirement of a DFT.

//Deposits the frequency data in an array whose

// reference is received as an incoming

// parameter.

class Dft01{

 public static void dft(double[] data,

 int dataLen,

 double[] spectrum){

 double twoPI = 2*Math.PI;

 //Set the frequency increment to the

 // reciprocal of the data length. This is

 // convenience only, and is not a requirement

 // of the DFT algorithm.

 double delF = 1.0/dataLen;

 //Outer loop iterates on frequency values.

 for(int i = 0; i < dataLen;i++){

 double freq = i*delF;

 double real = 0;

 double imag = 0;

 //Inner loop iterates on time- series

 // points.

 for(int j=0; j < dataLen; j++){

 real += data[j]*Math.cos(twoPI*freq*j);

 imag += data[j]*Math.sin(twoPI*freq*j);

 spectrum[i] = Math.sqrt(

 real*real + imag*imag);

 }//end inner loop

 }//end outer loop

 }//end dft

}//end Dft01

Listing 24

/* File Graph03.java

Copyright 2002, R.G.Baldwin

This program is very similar to Graph01

except that it has been modified to

allow the user to manually resize and

replot the frame.

Note: This program requires access to

the interface named GraphIntfc01.

This is a plotting program. It is

designed to access a class file, which

implements GraphIntfc01, and to plot up

to five functions defined in that class

file. The plotting surface is divided

into the required number of equally

sized plotting areas, and one function

is plotted on Cartesian coordinates in

each area.

The methods corresponding to the

functions are named f1, f2, f3, f4,

and f5.

The class containing the functions must

also define a method named

getNmbr(), which takes no parameters

and returns the number of functions to

be plotted. If this method returns a

value greater than 5, a

NoSuchMethodException will be thrown.

Note that the constructor for the class

that implements GraphIntfc01 must not

require any parameters due to the

use of the newInstance method of the

Class class to instantiate an object

of that class.

If the number of functions is less

than 5, then the absent method names

must begin with f5 and work down toward

f1. For example, if the number of

functions is 3, then the program will

expect to call methods named f1, f2,

and f3. It is OK for the absent

methods to be defined in the class.

They simply won't be invoked.

The plotting areas have alternating

white and gray backgrounds to make them

easy to separate visually.

All curves are plotted in black. A

Cartesian coordinate system with axes,

tic marks, and labels is drawn in red

in each plotting area.

The Cartesian coordinate system in each

plotting area has the same horizontal

and vertical scale, as well as the

same tic marks and labels on the axes.

The labels displayed on the axes,

correspond to the values of the extreme

edges of the plotting area.

The program also compiles a sample

class named junk, which contains five

methods and the method named getNmbr.

This makes it easy to compile and test

this program in a stand-alone mode.

At runtime, the name of the class that

implements the GraphIntfc01 interface

must be provided as a command-line

parameter. If this parameter is

missing, the program instantiates an

object from the internal class named

junk and plots the data provided by

that class. Thus, you can test the

program by running it with no

command-line parameter.

This program provides the following

text fields for user input, along with

a button labeled Graph. This allows

the user to adjust the parameters and

replot the graph as many times with as

many plotting scales as needed:

xMin = minimum x-axis value

xMax = maximum x-axis value

yMin = minimum y-axis value

yMax = maximum y-axis value

xTicInt = tic interval on x-axis

yTicInt = tic interval on y-axis

xCalcInc = calculation interval

The user can modify any of these

parameters and then click the Graph

button to cause the five functions

to be re-plotted according to the

new parameters.

Whenever the Graph button is clicked,

the event handler instantiates a new

object of the class that implements

the GraphIntfc01 interface. Depending

on the nature of that class, this may

be redundant in some cases. However,

it is useful in those cases where it

is necessary to refresh the values of

instance variables defined in the

class (such as a counter, for example).

Tested using JDK 1.4.0 under Win 2000.

This program uses constants that were

first defined in the Color class of

v1.4.0. Therefore, the program

requires v1.4.0 or later to compile and

run correctly.

**************************************/

import java.awt.*;

import java.awt.event.*;

import java.awt.geom.*;

import javax.swing.*;

import javax.swing.border.*;

class Graph03{

 public static void main(

 String[] args)

 throws NoSuchMethodException,

 ClassNotFoundException,

 InstantiationException,

 IllegalAccessException{

 if(args.length == 1){

 //pass command-line parameter

 new GUI(args[0]);

 }else{

 //no command-line parameter given

 new GUI(null);

 }//end else

 }// end main

}//end class Graph03 definition

//===================================//

class GUI extends JFrame

 implements ActionListener{

 //Define plotting parameters and

 // their default values.

 double xMin = 0.0;

 double xMax = 400.0;

 double yMin = -100.0;

 double yMax = 100.0;

 //Tic mark intervals

 double xTicInt = 20.0;

 double yTicInt = 20.0;

 //Tic mark lengths. If too small

 // on x-axis, a default value is

 // used later.

 double xTicLen = (yMax-yMin)/50;

 double yTicLen = (xMax-xMin)/50;

 //Calculation interval along x-axis

 double xCalcInc = 1.0;

 //Text fields for plotting parameters

 JTextField xMinTxt =

 new JTextField("" + xMin);

 JTextField xMaxTxt =

 new JTextField("" + xMax);

 JTextField yMinTxt =

 new JTextField("" + yMin);

 JTextField yMaxTxt =

 new JTextField("" + yMax);

 JTextField xTicIntTxt =

 new JTextField("" + xTicInt);

 JTextField yTicIntTxt =

 new JTextField("" + yTicInt);

 JTextField xCalcIncTxt =

 new JTextField("" + xCalcInc);

 //Panels to contain a label and a

 // text field

 JPanel pan0 = new JPanel();

 JPanel pan1 = new JPanel();

 JPanel pan2 = new JPanel();

 JPanel pan3 = new JPanel();

 JPanel pan4 = new JPanel();

 JPanel pan5 = new JPanel();

 JPanel pan6 = new JPanel();

 //Misc instance variables

 int frmWidth = 408;

 int frmHeight = 430;

 int width;

 int height;

 int number;

 GraphIntfc01 data;

 String args = null;

 //Plots are drawn on the canvases

 // in this array.

 Canvas[] canvases;

 //Constructor

 GUI(String args)throws

 NoSuchMethodException,

 ClassNotFoundException,

 InstantiationException,

 IllegalAccessException{

 if(args != null){

 //Save for use later in the

 // ActionEvent handler

 this.args = args;

 //Instantiate an object of the

 // target class using the String

 // name of the class.

 data = (GraphIntfc01)

 Class.forName(args).

 newInstance();

 }else{

 //Instantiate an object of the

 // test class named junk.

 data = new junk();

 }//end else

 //Create array to hold correct

 // number of Canvas objects.

 canvases =

 new Canvas[data.getNmbr()];

 //Throw exception if number of

 // functions is greater than 5.

 number = data.getNmbr();

 if(number > 5){

 throw new NoSuchMethodException(

 "Too many functions. "

 + "Only 5 allowed.");

 }//end if

 //Create the control panel and

 // give it a border for cosmetics.

 JPanel ctlPnl = new JPanel();

 ctlPnl.setLayout(//?rows x 4 cols

 new GridLayout(0,4));

 ctlPnl.setBorder(

 new EtchedBorder());

 //Button for replotting the graph

 JButton graphBtn =

 new JButton("Graph");

 graphBtn.addActionListener(this);

 //Populate each panel with a label

 // and a text field. Will place

 // these panels in a grid on the

 // control panel later.

 pan0.add(new JLabel("xMin"));

 pan0.add(xMinTxt);

 pan1.add(new JLabel("xMax"));

 pan1.add(xMaxTxt);

 pan2.add(new JLabel("yMin"));

 pan2.add(yMinTxt);

 pan3.add(new JLabel("yMax"));

 pan3.add(yMaxTxt);

 pan4.add(new JLabel("xTicInt"));

 pan4.add(xTicIntTxt);

 pan5.add(new JLabel("yTicInt"));

 pan5.add(yTicIntTxt);

 pan6.add(new JLabel("xCalcInc"));

 pan6.add(xCalcIncTxt);

 //Add the populated panels and the

 // button to the control panel with

 // a grid layout.

 ctlPnl.add(pan0);

 ctlPnl.add(pan1);

 ctlPnl.add(pan2);

 ctlPnl.add(pan3);

 ctlPnl.add(pan4);

 ctlPnl.add(pan5);

 ctlPnl.add(pan6);

 ctlPnl.add(graphBtn);

 //Create a panel to contain the

 // Canvas objects. They will be

 // displayed in a one-column grid.

 JPanel canvasPanel = new JPanel();

 canvasPanel.setLayout(//?rows,1 col

 new GridLayout(0,1));

 //Create a custom Canvas object for

 // each function to be plotted and

 // add them to the one-column grid.

 // Make background colors alternate

 // between white and gray.

 for(int cnt = 0;

 cnt < number; cnt++){

 switch(cnt){

 case 0 :

 canvases[cnt] =

 new MyCanvas(cnt);

 canvases[cnt].setBackground(

 Color.WHITE);

 break;

 case 1 :

 canvases[cnt] =

 new MyCanvas(cnt);

 canvases[cnt].setBackground(

 Color.LIGHT_GRAY);

 break;

 case 2 :

 canvases[cnt] =

 new MyCanvas(cnt);

 canvases[cnt].setBackground(

 Color.WHITE);

 break;

 case 3 :

 canvases[cnt] =

 new MyCanvas(cnt);

 canvases[cnt].setBackground(

 Color.LIGHT_GRAY);

 break;

 case 4 :

 canvases[cnt] =

 new MyCanvas(cnt);

 canvases[cnt].

 setBackground(Color.WHITE);

 }//end switch

 //Add the object to the grid.

 canvasPanel.add(canvases[cnt]);

 }//end for loop

 //Add the sub-assemblies to the

 // frame. Set its location, size,

 // and title, and make it visible.

 getContentPane().

 add(ctlPnl,"South");

 getContentPane().

 add(canvasPanel,"Center");

 setBounds(0,0,frmWidth,frmHeight);

 if(args == null){

 setTitle("Graph03, " +

 "Copyright 2002, " +

 "Richard G. Baldwin");

 }else{

 setTitle("Graph03/" + args +

 " Copyright 2002, " +

 "R. G. Baldwin");

 }//end else

 setVisible(true);

 //Set to exit on X-button click

 setDefaultCloseOperation(

 EXIT_ON_CLOSE);

 //Guarantee a repaint on startup.

 for(int cnt = 0;

 cnt < number; cnt++){

 canvases[cnt].repaint();

 }//end for loop

 }//end constructor

 //---------------------------------//

 //This event handler is registered

 // on the JButton to cause the

 // functions to be replotted.

 public void actionPerformed(

 ActionEvent evt){

 //Re-instantiate the object that

 // provides the data

 try{

 if(args != null){

 data = (GraphIntfc01)Class.

 forName(args).newInstance();

 }else{

 data = new junk();

 }//end else

 }catch(Exception e){

 //Known to be safe at this point.

 // Otherwise would have aborted

 // earlier.

 }//end catch

 //Set plotting parameters using

 // data from the text fields.

 xMin = Double.parseDouble(

 xMinTxt.getText());

 xMax = Double.parseDouble(

 xMaxTxt.getText());

 yMin = Double.parseDouble(

 yMinTxt.getText());

 yMax = Double.parseDouble(

 yMaxTxt.getText());

 xTicInt = Double.parseDouble(

 xTicIntTxt.getText());

 yTicInt = Double.parseDouble(

 yTicIntTxt.getText());

 xCalcInc = Double.parseDouble(

 xCalcIncTxt.getText());

 //Calculate new values for the

 // length of the tic marks on the

 // axes. If too small on x-axis,

 // a default value is used later.

 xTicLen = (yMax-yMin)/50;

 yTicLen = (xMax-xMin)/50;

 //Repaint the plotting areas

 for(int cnt = 0;

 cnt < number; cnt++){

 canvases[cnt].repaint();

 }//end for loop

 }//end actionPerformed

 //---------------------------------//

//This is an inner class, which is used

// to override the paint method on the

// plotting surface.

class MyCanvas extends Canvas{

 int cnt;//object number

 //Factors to convert from double

 // values to integer pixel locations.

 double xScale;

 double yScale;

 MyCanvas(int cnt){//save obj number

 this.cnt = cnt;

 }//end constructor

 //Override the paint method

 public void paint(Graphics g){

 //Get and save the size of the

 // plotting surface

 width = canvases[0].getWidth();

 height = canvases[0].getHeight();

 //Calculate the scale factors

 xScale = width/(xMax-xMin);

 yScale = height/(yMax-yMin);

 //Set the origin based on the

 // minimum values in x and y

 g.translate((int)((0-xMin)*xScale),

 (int)((0-yMin)*yScale));

 drawAxes(g);//Draw the axes

 g.setColor(Color.BLACK);

 //Get initial data values

 double xVal = xMin;

 int oldX = getTheX(xVal);

 int oldY = 0;

 //Use the Canvas obj number to

 // determine which method to

 // invoke to get the value for y.

 switch(cnt){

 case 0 :

 oldY = getTheY(data.f1(xVal));

 break;

 case 1 :

 oldY = getTheY(data.f2(xVal));

 break;

 case 2 :

 oldY = getTheY(data.f3(xVal));

 break;

 case 3 :

 oldY = getTheY(data.f4(xVal));

 break;

 case 4 :

 oldY = getTheY(data.f5(xVal));

 }//end switch

 //Now loop and plot the points

 while(xVal < xMax){

 int yVal = 0;

 //Get next data value. Use the

 // Canvas obj number to

 // determine which method to

 // invoke to get the value for y.

 switch(cnt){

 case 0 :

 yVal =

 getTheY(data.f1(xVal));

 break;

 case 1 :

 yVal =

 getTheY(data.f2(xVal));

 break;

 case 2 :

 yVal =

 getTheY(data.f3(xVal));

 break;

 case 3 :

 yVal =

 getTheY(data.f4(xVal));

 break;

 case 4 :

 yVal =

 getTheY(data.f5(xVal));

 }//end switch1

 //Convert the x-value to an int

 // and draw the next line segment

 int x = getTheX(xVal);

 g.drawLine(oldX,oldY,x,yVal);

 //Increment along the x-axis

 xVal += xCalcInc;

 //Save end point to use as start

 // point for next line segment.

 oldX = x;

 oldY = yVal;

 }//end while loop

 }//end overridden paint method

 //---------------------------------//

 //Method to draw axes with tic marks

 // and labels in the color RED

 void drawAxes(Graphics g){

 g.setColor(Color.RED);

 //Lable left x-axis and bottom

 // y-axis. These are the easy

 // ones. Separate the labels from

 // the ends of the tic marks by

 // two pixels.

 g.drawString("" + (int)xMin,

 getTheX(xMin),

 getTheY(xTicLen/2)-2);

 g.drawString("" + (int)yMin,

 getTheX(yTicLen/2)+2,

 getTheY(yMin));

 //Label the right x-axis and the

 // top y-axis. These are the hard

 // ones because the position must

 // be adjusted by the font size and

 // the number of characters.

 //Get the width of the string for

 // right end of x-axis and the

 // height of the string for top of

 // y-axis

 //Create a string that is an

 // integer representation of the

 // label for the right end of the

 // x-axis. Then get a character

 // array that represents the

 // string.

 int xMaxInt = (int)xMax;

 String xMaxStr = "" + xMaxInt;

 char[] array = xMaxStr.

 toCharArray();

 //Get a FontMetrics object that can

 // be used to get the size of the

 // string in pixels.

 FontMetrics fontMetrics =

 g.getFontMetrics();

 //Get a bounding rectangle for the

 // string

 Rectangle2D r2d =

 fontMetrics.getStringBounds(

 array,0,array.length,g);

 //Get the width and the height of

 // the bounding rectangle. The

 // width is the width of the label

 // at the right end of the

 // x-axis. The height applies to

 // all the labels, but is needed

 // specifically for the label at

 // the top end of the y-axis.

 int labWidth =

 (int)(r2d.getWidth());

 int labHeight =

 (int)(r2d.getHeight());

 //Label the positive x-axis and the

 // positive y-axis using the width

 // and height from above to

 // position the labels. These

 // labels apply to the very ends of

 // the axes at the edge of the

 // plotting surface.

 g.drawString("" + (int)xMax,

 getTheX(xMax)-labWidth,

 getTheY(xTicLen/2)-2);

 g.drawString("" + (int)yMax,

 getTheX(yTicLen/2)+2,

 getTheY(yMax)+labHeight);

 //Draw the axes

 g.drawLine(getTheX(xMin),

 getTheY(0.0),

 getTheX(xMax),

 getTheY(0.0));

 g.drawLine(getTheX(0.0),

 getTheY(yMin),

 getTheX(0.0),

 getTheY(yMax));

 //Draw the tic marks on axes

 xTics(g);

 yTics(g);

 }//end drawAxes

 //---------------------------------//

 //Method to draw tic marks on x-axis

 void xTics(Graphics g){

 double xDoub = 0;

 int x = 0;

 //Get the ends of the tic marks.

 int topEnd = getTheY(xTicLen/2);

 int bottomEnd =

 getTheY(-xTicLen/2);

 //If the vertical size of the

 // plotting area is small, the

 // calculated tic size may be too

 // small. In that case, set it to

 // 10 pixels.

 if(topEnd < 5){

 topEnd = 5;

 bottomEnd = -5;

 }//end if

 //Loop and draw a series of short

 // lines to serve as tic marks.

 // Begin with the positive x-axis

 // moving to the right from zero.

 while(xDoub < xMax){

 x = getTheX(xDoub);

 g.drawLine(x,topEnd,x,bottomEnd);

 xDoub += xTicInt;

 }//end while

 //Now do the negative x-axis moving

 // to the left from zero

 xDoub = 0;

 while(xDoub > xMin){

 x = getTheX(xDoub);

 g.drawLine(x,topEnd,x,bottomEnd);

 xDoub -= xTicInt;

 }//end while

 }//end xTics

 //---------------------------------//

 //Method to draw tic marks on y-axis

 void yTics(Graphics g){

 double yDoub = 0;

 int y = 0;

 int rightEnd = getTheX(yTicLen/2);

 int leftEnd = getTheX(-yTicLen/2);

 //Loop and draw a series of short

 // lines to serve as tic marks.

 // Begin with the positive y-axis

 // moving up from zero.

 while(yDoub < yMax){

 y = getTheY(yDoub);

 g.drawLine(rightEnd,y,leftEnd,y);

 yDoub += yTicInt;

 }//end while

 //Now do the negative y-axis moving

 // down from zero.

 yDoub = 0;

 while(yDoub > yMin){

 y = getTheY(yDoub);

 g.drawLine(rightEnd,y,leftEnd,y);

 yDoub -= yTicInt;

 }//end while

 }//end yTics

 //---------------------------------//

 //This method translates and scales

 // a double y value to plot properly

 // in the integer coordinate system.

 // In addition to scaling, it causes

 // the positive direction of the

 // y-axis to be from bottom to top.

 int getTheY(double y){

 double yDoub = (yMax+yMin)-y;

 int yInt = (int)(yDoub*yScale);

 return yInt;

 }//end getTheY

 //---------------------------------//

 //This method scales a double x value

 // to plot properly in the integer

 // coordinate system.

 int getTheX(double x){

 return (int)(x*xScale);

 }//end getTheX

 //---------------------------------//

}//end inner class MyCanvas

//===================================//

}//end class GUI

//===================================//

//Sample test class. Required for

// compilation and stand-alone

// testing.

class junk implements GraphIntfc01{

 public int getNmbr(){

 //Return number of functions to

 // process. Must not exceed 5.

 return 4;

 }//end getNmbr

 public double f1(double x){

 return (x*x*x)/200.0;

 }//end f1

 public double f2(double x){

 return -(x*x*x)/200.0;

 }//end f2

 public double f3(double x){

 return (x*x)/200.0;

 }//end f3

 public double f4(double x){

 return 50*Math.cos(x/10.0);

 }//end f4

 public double f5(double x){

 return 100*Math.sin(x/20.0);

 }//end f5

}//end sample class junk

Listing 25

/* File GraphIntfc01.java

Copyright 2005, R.G.Baldwin

Rev 5/14/04

This interface must be implemented by classes

whose objects produce data to be plotted by

programs such as Graph03 and Graph06.

Tested using SDK 1.4.2 under WinXP.

**/

public interface GraphIntfc01{

 public int getNmbr();

 public double f1(double x);

 public double f2(double x);

 public double f3(double x);

 public double f4(double x);

 public double f5(double x);

}//end GraphIntfc01

Listing 26

Copyright 2005, Richard G. Baldwin. Reproduction in whole or in part in any form or medium

without express written permission from Richard Baldwin is prohibited.

About the author

Richard Baldwin is a college professor (at Austin Community College in Austin, TX) and

private consultant whose primary focus is a combination of Java, C#, and XML. In addition to

the many platform and/or language independent benefits of Java and C# applications, he

believes that a combination of Java, C#, and XML will become the primary driving force in the

delivery of structured information on the Web.

mailto:Baldwin@DickBaldwin.com

Richard has participated in numerous consulting projects, and he frequently provides onsite

training at the high-tech companies located in and around Austin, Texas. He is the author of

Baldwin's Programming Tutorials, which has gained a worldwide following among experienced

and aspiring programmers. He has also published articles in JavaPro magazine.

In addition to his programming expertise, Richard has many years of practical experience in

Digital Signal Processing (DSP). His first job after he earned his Bachelor's degree was doing

DSP in the Seismic Research Department of Texas Instruments. (TI is still a world leader in

DSP.) In the following years, he applied his programming and DSP expertise to other

interesting areas including sonar and underwater acoustics.

Richard holds an MSEE degree from Southern Methodist University and has many years of

experience in the application of computer technology to real-world problems.

Baldwin@DickBaldwin.com

-end-

http://www.dickbaldwin.com/
mailto:baldwin@dickbaldwin.com

