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CS 229, Public Course

Problem Set #3 Solutions: Learning Theory and
Unsupervised Learning

1. Uniform convergence and Model Selection

In this problem, we will prove a bound on the error of a simple model selection procedure.

Let there be a binary classification problem with labels y ∈ {0, 1}, and let H1 ⊆ H2 ⊆
. . . ⊆ Hk be k different finite hypothesis classes (|Hi| < ∞). Given a dataset S of m iid
training examples, we will divide it into a training set Strain consisting of the first (1−β)m
examples, and a hold-out cross validation set Scv consisting of the remaining βm examples.
Here, β ∈ (0, 1).

Let ĥi = arg minh∈Hi
ε̂Strain

(h) be the hypothesis in Hi with the lowest training error

(on Strain). Thus, ĥi would be the hypothesis returned by training (with empirical risk
minimization) using hypothesis class Hi and dataset Strain. Also let h⋆

i = arg minh∈Hi
ε(h)

be the hypothesis in Hi with the lowest generalization error.

Suppose that our algorithm first finds all the ĥi’s using empirical risk minimization then
uses the hold-out cross validation set to select a hypothesis from this the {ĥ1, . . . , ĥk} with
minimum training error. That is, the algorithm will output

ĥ = arg min
h∈{ĥ1,...,ĥk}

ε̂Scv
(h).

For this question you will prove the following bound. Let any δ > 0 be fixed. Then with
probability at least 1 − δ, we have that

ε(ĥ) ≤ min
i=1,...,k

(

ε(h∗
i ) +

√

2

(1 − β)m
log

4|Hi|

δ

)

+

√

2

2βm
log

4k

δ

(a) Prove that with probability at least 1 − δ
2 , for all ĥi,

|ε(ĥi) − ε̂Scv
(ĥi)| ≤

√

1

2βm
log

4k

δ
.

Answer: For each ĥi, the empirical error on the cross-validation set, ε̂(ĥi) represents

the average of βm random variables with mean ε(ĥi), so by the Hoeffding inequality for

any ĥi,
P (|ε(ĥi) − ε̂Scv

(ĥi)| ≥ γ) ≤ 2 exp(−2γ2βm).

As in the class notes, to insure that this holds for all ĥi, we need to take the union over
all k of the ĥi’s.

P (∃i, s.t.|ε(ĥi) − ε̂Scv
(ĥi)| ≥ γ) ≤ 2k exp(−2γ2βm).
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Setting this term equal to δ/2 and solving for γ yields

γ =

√

1

2βm
log

4k

δ

proving the desired bound.

(b) Use part (a) to show that with probability 1 − δ
2 ,

ε(ĥ) ≤ min
i=1,...,k

ε(ĥi) +

√

2

βm
log

4k

δ
.

Answer: Let j = arg mini ε(ĥi). Using part (a), with probability at least 1 − δ
2

ε(ĥ) ≤ ε̂Scv
(ĥ) +

√

1

2βm
log

4k

δ

= min
i

ε̂Scv
(ĥi) +

√

1

2βm
log

4k

δ

≤ ε̂Scv
(ĥj) +

√

1

2βm
log

4k

δ

≤ ε(ĥj) + 2

√

1

2βm
log

4k

δ

= min
i=1,...,k

ε(ĥi) +

√

2

βm
log

4k

δ

(c) Let j = arg mini ε(ĥi). We know from class that for Hj , with probability 1 − δ
2

|ε(ĥj) − ε̂Strain
(h⋆

j )| ≤

√

2

(1 − β)m
log

4|Hj |

δ
, ∀hj ∈ Hj .

Use this to prove the final bound given at the beginning of this problem.

Answer: The bounds in parts (a) and (c) both hold simultaneously with probability

(1 − δ
2 )2 = 1 − δ + δ2

4 > 1 − δ, so with probablity greater than 1 − δ,

ε(ĥ) ≤ ε(h⋆
j ) + 2

√

1

2(1 − γ)m
log

2|Hj |
δ
2

+ 2

√

1

2γm
log

2k
δ
2

which is equivalent to the bound we want to show.

2. VC Dimension

Let the input domain of a learning problem be X = R. Give the VC dimension for each
of the following classes of hypotheses. In each case, if you claim that the VC dimension is
d, then you need to show that the hypothesis class can shatter d points, and explain why
there are no d + 1 points it can shatter.
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• h(x) = 1{a < x}, with parameter a ∈ R.

Answer: VC-dimension = 1.

(a) It can shatter point {0}, by choosing a to be 2 and −2.

(b) It cannot shatter any two points {x1, x2}, x1 < x2, because the labelling x1 = 1 and
x2 = 0 cannot be realized.

• h(x) = 1{a < x < b}, with parameters a, b ∈ R.

Answer: VC-dimension = 2.

(a) It can shatter points {0, 2} by choosing (a, b) to be (3, 5), (−1, 1), (1, 3), (−1, 3).

(b) It cannot shatter any three points {x1, x2, x3}, x1 < x2 < x3, because the labelling
x1 = x3 = 1, x2 = 0 cannot be realized.

• h(x) = 1{a sin x > 0}, with parameter a ∈ R.

Answer: VC-dimension = 1. a controls the amplitude of the sine curve.

(a) It can shatter point {π
2 } by choosing a to be 1 and −1.

(b) It cannot shatter any two points {x1, x2}, since, the labellings of x1 and x2 will flip
together. If x1 = x2 = 1 for some a, then we cannot achieve x1 6= x2. If x1 6= x2

for some a, then we cannot achieve x1 = x2 = 1 (x1 = x2 = 0 can be achieved by
setting a = 0).

• h(x) = 1{sin(x + a) > 0}, with parameter a ∈ R.

Answer: VC-dimension = 2. a controls the phase of the sine curve.

(a) It can shatter points {π
4 , 3π

4 }, by choosing a to be 0, π
2 , π, and 3π

2 .

(b) It cannot shatter any three points {x1, x2, x3}. Since sine has a preiod of 2π, let’s
define x′

i = xi mod 2π. W.l.o.g., assume x′
1 < x′

2 < x′
3. If the labelling of

x1 = x2 = x3 = 1 can be realized, then the labelling of x1 = x3 = 1, x2 = 0 will
not be realizable. Notice the similarity to the second question.

3. ℓ1 regularization for least squares

In the previous problem set, we looked at the least squares problem where the objective
function is augmented with an additional regularization term λ‖θ‖2

2. In this problem we’ll
consider a similar regularized objective but this time with a penalty on the ℓ1 norm of
the parameters λ‖θ‖1, where ‖θ‖1 is defined as

∑

i |θi|. That is, we want to minimize the
objective

J(θ) =
1

2

m
∑

i=1

(θT x(i) − y(i))2 + λ
n
∑

i=1

|θi|.

There has been a great deal of recent interest in ℓ1 regularization, which, as we will see,
has the benefit of outputting sparse solutions (i.e., many components of the resulting θ are
equal to zero).

The ℓ1 regularized least squares problem is more difficult than the unregularized or ℓ2
regularized case, because the ℓ1 term is not differentiable. However, there have been many
efficient algorithms developed for this problem that work very well in practive. One very
straightforward approach, which we have already seen in class, is the coordinate descent
method. In this problem you’ll derive and implement a coordinate descent algorithm for
ℓ1 regularized least squares, and apply it to test data.
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(a) Here we’ll derive the coordinate descent update for a given θi. Given the X and
~y matrices, as defined in the class notes, as well a parameter vector θ, how can we
adjust θi so as to minimize the optimization objective? To answer this question, we’ll
rewrite the optimization objective above as

J(θ) =
1

2
‖Xθ − ~y‖2

2 + λ‖θ‖1 =
1

2
‖Xθ̄ + Xiθi − ~y‖2

2 + λ‖θ̄‖1 + λ|θi|

where Xi ∈ R
m denotes the ith column of X, and θ̄ is equal to θ except with θ̄i = 0;

all we have done in rewriting the above expression is to make the θi term explicit in
the objective. However, this still contains the |θi| term, which is non-differentiable
and therefore difficult to optimize. To get around this we make the observation that
the sign of θi must either be non-negative or non-positive. But if we knew the sign of
θi, then |θi| becomes just a linear term. That, is, we can rewrite the objective as

J(θ) =
1

2
‖Xθ̄ + Xiθi − ~y‖2

2 + λ‖θ̄‖1 + λsiθi

where si denotes the sign of θi, si ∈ {−1, 1}. In order to update θi, we can just
compute the optimal θi for both possible values of si (making sure that we restrict
the optimal θi to obey the sign restriction we used to solve for it), then look to see
which achieves the best objective value.

For each of the possible values of si, compute the resulting optimal value of θi. [Hint:
to do this, you can fix si in the above equation, then differentiate with respect to θi

to find the best value. Finally, clip θi so that it lies in the allowable range — i.e., for
si = 1, you need to clip θi such that θi ≥ 0.]

Answer: For si = 1,

J(θ) =
1

2
tr(Xθ̄ + Xiθi − ~y)T (Xθ̄ + Xiθi − ~y) + λ‖θ̄‖1 + λθi

=
1

2

(

XT
i Xiθ

2
i + 2XT

i (Xθ̄ − ~y)θi + ‖Xθ̄ − ~y‖2
2

)

+ λ‖θ̄‖1 + λθi,

so
∂J(θ)

∂θi

= XT
i Xiθ + XT

i (Xθ̄ − ~y) + λ

which means the optimal θi is given by

θi = max

{

−XT
i (Xθ̄ − ~y) − λ

XT
i Xi

, 0

}

.

Similarly, for si = −1, the optimal θi is given by

θi = min

{

−XT
i (Xθ̄ − ~y) + λ

XT
i Xi

, 0

}

.

(b) Implement the above coordinate descent algorithm using the updates you found in
the previous part. We have provided a skeleton theta = l1ls(X,y,lambda) function
in the q3/ directory. To implement the coordinate descent algorithm, you should
repeatedly iterate over all the θi’s, adjusting each as you found above. You can
terminate the process when θ changes by less than 10−5 after all n of the updates.

Answer: The following is our implementation of l1ls.m:
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function theta = l1l2(X,y,lambda)

m = size(X,1);

n = size(X,2);

theta = zeros(n,1);

old_theta = ones(n,1);

while (norm(theta - old_theta) > 1e-5)

old_theta = theta;

for i=1:n,

% compute possible values for theta

theta(i) = 0;

theta_i(1) = max((-X(:,i)’*(X*theta - y) - lambda) / (X(:,i)’*X(:,i)), 0);

theta_i(2) = min((-X(:,i)’*(X*theta - y) + lambda) / (X(:,i)’*X(:,i)), 0);

% get objective value for both possible thetas

theta(i) = theta_i(1);

obj_theta(1) = 0.5*norm(X*theta - y)^2 + lambda*norm(theta,1);

theta(i) = theta_i(2);

obj_theta(2) = 0.5*norm(X*theta - y)^2 + lambda*norm(theta,1);

% pick the theta which minimizes the objective

[min_obj, min_ind] = min(obj_theta);

theta(i) = theta_i(min_ind);

end

end

(c) Test your implementation on the data provided in the q3/ directory. The [X, y,

theta true] = load data; function will load all the data — the data was generated
by y = X*theta true + 0.05*randn(20,1), but theta true is sparse, so that very
few of the columns of X actually contain relevant features. Run your l1ls.m imple-
mentation on this data set, ranging λ from 0.001 to 10. Comment briefly on how this
algorithm might be used for feature selection.

Answer: For λ = 1, our implementation of l1 regularized least squares recovers the
exact sparsity pattern of the true parameter that generated the data. In constrast, using
any amount of l2 regularization still leads to θ’s that contain no zeros. This suggests
that the l1 regularization could be very useful as a feature selection algorithm: we could
run l1 regularized least squares to see which coefficients are non-zero, then select only
these features for use with either least-squares or possibly a completely different machine
learning algorithm.

4. K-Means Clustering

In this problem you’ll implement the K-means clustering algorithm on a synthetic data
set. There is code and data for this problem in the q4/ directory. Run load ’X.dat’;

to load the data file for clustering. Implement the [clusters, centers] = k means(X,

k) function in this directory. As input, this function takes the m × n data matrix X and
the number of clusters k. It should output a m element vector, clusters, which indicates
which of the clusters each data point belongs to, and a k × n matrix, centers, which
contains the centroids of each cluster. Run the algorithm on the data provided, with k = 3
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and k = 4. Plot the cluster assignments and centroids for each iteration of the algorithm
using the draw clusters(X, clusters, centroids) function. For each k, be sure to run
the algorithm several times using different initial centroids.

Answer: The following is our implementation of k means.m:

function [clusters, centroids] = k_means(X, k)

m = size(X,1);

n = size(X,2);

oldcentroids = zeros(k,n);

centroids = X(ceil(rand(k,1)*m),:);

while (norm(oldcentroids - centroids) > 1e-15)

oldcentroids = centroids;

% compute cluster assignments

for i=1:m,

dists = sum((repmat(X(i,:), k, 1) - centroids).^2, 2);

[min_dist, clusters(i,1)] = min(dists);

end

draw_clusters(X, clusters, centroids);

pause(0.1);

% compute cluster centroids

for i=1:k,

centroids(i,:) = mean(X(clusters == i, :));

end

end

Below we show the centroid evolution for two typical runs with k = 3. Note that the different
starting positions of the clusters lead to do different final clusterings.
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5. The Generalized EM algorithm

When attempting to run the EM algorithm, it may sometimes be difficult to perform the M
step exactly — recall that we often need to implement numerical optimization to perform
the maximization, which can be costly. Therefore, instead of finding the global maximum
of our lower bound on the log-likelihood, and alternative is to just increase this lower bound
a little bit, by taking one step of gradient ascent, for example. This is commonly known
as the Generalized EM (GEM) algorithm.
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Put slightly more formally, recall that the M-step of the standard EM algorithm performs
the maximization

θ := arg max
θ

∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))
.

The GEM algorithm, in constrast, performs the following update in the M-step:

θ := θ + α∇θ

∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))

where α is a learning rate which we assume is choosen small enough such that we do not
decrease the objective function when taking this gradient step.

(a) Prove that the GEM algorithm described above converges. To do this, you should
show that the the likelihood is monotonically improving, as it does for the EM algo-
rithm — i.e., show that ℓ(θ(t+1)) ≥ ℓ(θ(t)).

Answer: We use the same logic as for the standard EM algorithm. Specifically, just
as for EM, we have for the GEM algorithm that

ℓ(θ(t+1)) ≥
∑

i

∑

z(i)

Q
(t)
i (z(i)) log

p(x(i), z(i); θ(t+1))

Q
(t)
i (z(i))

≥
∑

i

∑

z(i)

Q
(t)
i (z(i)) log

p(x(i), z(i); θ(t))

Q
(t)
i (z(i))

= ℓ(θ(t))

where as in EM the first line holds due to Jensen’s equality, and the last line holds because
we choose the Q distribution to make this hold with equality. The only difference between
EM and GEM is the logic as to why the second line holds: for EM it held because θ(t+1)

was chosen to maximize this quantity, but for GEM it holds by our assumption that we
take a gradient step small enough so as not to decrease the objective function.

(b) Instead of using the EM algorithm at all, suppose we just want to apply gradient ascent
to maximize the log-likelihood directly. In other words, we are trying to maximize
the (non-convex) function

ℓ(θ) =
∑

i

log
∑

z(i)

p(x(i), z(i); θ)

so we could simply use the update

θ := θ + α∇θ

∑

i

log
∑

z(i)

p(x(i), z(i); θ).

Show that this procedure in fact gives the same update as the GEM algorithm de-
scribed above.

Answer: Differentiating the log likelihood directly we get

∂

∂θj

∑

i

log
∑

z(i)

p(x(i), z(i); θ) =
∑

i

1
∑

z(i) p(x(i), z(i); θ)

∑

z(i)

∂

∂θj

p(x(i), z(i); θ)

=
∑

i

∑

z(i)

1

p(x(i); θ)
·

∂

∂θj

p(x(i), z(i); θ).
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For the GEM algorithm,

∂

∂θj

∑

i

∑

z(i)

Qi(z
(i)) log

p(x(i), z(i); θ)

Qi(z(i))
=

∑

i

∑

z(i)

Qi(z
(i))

p(x(i), z(i); θ)
·

∂

∂θj

p(x(i), z(i); θ).

But the E-step of the GEM algorithm chooses

Qi(z
(i)) = p(z(i)|x(i); θ) =

p(x(i), z(i); θ)

p(x(i); θ)
,

so

∑

i

∑

z(i)

Qi(z
(i))

p(x(i), z(i); θ)
·

∂

∂θj

p(x(i), z(i); θ) =
∑

i

∑

z(i)

1

p(x(i); θ)
·

∂

∂θj

p(x(i), z(i); θ)

which is the same as the derivative of the log likelihood.


