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Signals and Systems 
 

Solutions to Homework Assignment #8 
 
Problem 1.  

a.  

  
b. 

 

 

c. 

 

To find the exact breakaway points, note that breakaway/in points are those points such that 
for some value of K there are double poles at that point, which is what happens just before the 
breakaway or just after the breakins. For example, in problem 1c we wish to find the roots to:  

 
To simplify, let’s write that as C(s) = 0. Recall that for C(s) to have double roots at s*, two 
conditions must be satisfied:  
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1 That C(s*) = 0 (obviously).  
2 That C’(s*) = 0, where C’(s) is the derivative according to s.  

 
The second one is so that s*

 
is an inflection point, else the roots will not be co-located. In 1c, 

we obtain:  

 

which gives the breakaway/breakin point at s = 1.5 for K < 0, since that point is in the root 
locus only when K < 0. 

Alternatively, we can use a purely algebraic method. The closed-loop poles are the roots of 
the following characteristic polynomial in s:  

 
 

To find break points where we have a double root on the real axis, we want to use the fact 
that the characteristic equation can be expressed as “squared”. To see this, we can complete 
square of the equation above with respect to s.  

 
Note that we can assume 1 + K ≠ 0 there are two roots at a double pole. Thus, we have 

 
When K = 0, we have the open loop poles as the closed 
loop poled. When K = −5, then the closed loop poles are at . Thus, the break points are at s = 
−1 with K = 0 and with K = −5.  

  
Problem 2 (O&W 11.57).  

Throughout this problem we are interested in analyzing the stability of the system as well as 
the behavior of e(t). The system will be able to track a particular input if limt→∞e(t) = 0. We 
begin by writing an expression for the closed loop transfer function  
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We can also write an expression for the Laplace transform of e(t),E(s): 

 
(a) Using the expressions given for Hp(s)and Hc(s)we have 

  
Thus, the system will be stable if the pole is in the left-half plane, i.e. α(K +1) > 0. Given 
that the system is stable, we can apply the final-value theorem to e(t) for an input x(t) = 
δ(t).  

  

Using x(t) = δ(t), X(s) = 1 and 

  

For the case when x(t) = u(t), X(s) = 1/s and 

  

(b) In order to stabilize the new system, we must choose K1 and K2 such that the closed loop 
system poles are to the left of the jω-axis. 

 

Thus, the system will be stable if we choose K1 and K2 such that α(K1 + 1) > 0 and αK2 > 0. In 
this case, with x(t) = u(t), X(s)= 1/s, E(s) is given by  
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Assuming that the system is stable, we can apply the final-value theorem:  

 

Thus, the system can track a step input. 
 
(c) Note that a 3rd  

order polynomial of the form 

s
3 
+ αs

2 
+ βs + γ  

will have roots in the left-half plane if α,β,γ > 0 and β > γ/α  

Using the new Hp(s)and PI control, we have: 

 

In this case it is not possible to stabilize the system because the −2s
2 
term. Using PID control 

we have:  

 

 The above system can be stabilized if K1, K2, K3 are chosen such that: 

  

 
Given that the above system is stable, we apply the final-value theorem: 
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Thus, the system can track a step input.  

Problem 3.  
a. From the root locus plotted below, it is clear that there will always be at least on 

closed-loop pole in the right half plane. Therefore, the system cannot be stabilized 
with proportional feedback.  

 
b.  The desired response corresponds to a double pole on the negative real axis. 

Proportional plus derivative feedback adds a zero. If the zero is to the left of the 
leftmost open-loop pole, it is possible to get the desired response, as shown below.  

 

The closed loop response will be given by  

  

To get a repeated root at s = −σ1, the closed loop response must have the form  

   
 

Therefore 

K2  − 1 = 2σ1 

and  
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Since σ1 must be greater than zero, K2 can be any real number bigger than 1. Then                    
and σ1 = (K2 −1)/2.  

c. Proportional plus integral feedback adds a pole at zero and a zero at s = −K4/K3. If the zero 
is in the right half plane, then the system is clearly unstable, as shown in the following 
root locus.  

 

If the zero is in the left half plane, then the system is clearly oscillatory, as shown in the 
following root locus.  

 

Thus, it is not possible to locate the zero in a position to get a stable, non-oscillatory 
response, as would be necessary if the closed-loop impulse response were to be that of a 
double pole on the real axis. 
 
 
 


