Signals and Systems

Homework Assignment \#8

Problem 1. Sketch the locus of closed-loop pole locations for the following systems, where each of the boxes is causal.
a.

b.

c.

Include separate diagrams for positive values of K and negative values of K.
Problem 2. Do problem 11.57 in the text (Oppenheim and Willsky).
Problem 3. Consider the following feedback system, which is composed of a causal forward path with two poles and a feedback path characterized by $G(s)$.

a. Is it possible to stabilize the system using proportional feedback, i.e., for $G(s)$ equal to a real valued number K ? If yes, give the range of values of K for which the system is stable. If no, explain why not.
b. Is it possible to use proportional plus derivative feedback (i.e., $G(s)=K_{1}+K_{2} s$) to produce a closed-loop impulse response of the form $h(t)=A t \mathrm{e}^{-\sigma_{1} t} u(t)$ for σ_{1} real and positive? If yes, determine values of K_{1} and K_{2} for such a response, as well as the resulting value of σ_{1}. If no, explain why not.
c. Is it possible to use proportional plus integral feedback (i.e., $G(s)=K_{3}+K_{4} / s$) to produce a closed-loop impulse response of the form $h(t)=A t e^{-\sigma_{2} t} u(t)$ for σ_{2} real and positive? If yes, determine values of K_{3} and K_{4} for such a response, as well as the resulting value of σ_{2}. If no, explain why not.

