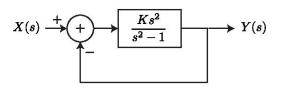
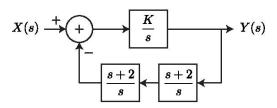
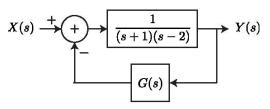

Signals and Systems


Homework Assignment #8

Problem 1. Sketch the locus of closed-loop pole locations for the following systems, where each of the boxes is causal.


a.

b.


c.

Include separate diagrams for positive values of *K* and negative values of *K*.

Problem 2. Do problem 11.57 in the text (Oppenheim and Willsky).

Problem 3. Consider the following feedback system, which is composed of a causal forward path with two poles and a feedback path characterized by G(s).

- a. Is it possible to stabilize the system using proportional feedback, i.e., for G(s) equal to a real valued number K? If yes, give the range of values of K for which the system is stable. If no, explain why not.
- b. Is it possible to use proportional plus derivative feedback (i.e., $G(s) = K_1 + K_2 s$) to produce a closed-loop impulse response of the form $h(t) = Ate^{-\sigma_1 t}u(t)$ for σ_1 real and positive? If yes, determine values of K_1 and K_2 for such a response, as well as the resulting value of σ_1 . If no, explain why not.

c. Is it possible to use proportional plus integral feedback (i.e., $G(s) = K_3 + K_4/s$) to produce a closed-loop impulse response of the form $h(t) = Ate^{-\sigma_2 t}u(t)$ for σ_2 real and positive? If yes, determine values of K_3 and K_4 for such a response, as well as the resulting value of σ_2 . If no, explain why not.