\qquad

Part 1

Frequencies after subtracting 200 Hz : \qquad
Set the offset to -200 Hz , and listen to the transposed melody. How does the transposed version compare to the original? Does it sound like the same melody?

Frequencies after adding 200 Hz : \qquad
Set the offset to +200 Hz , and listen to the transposed melody. How does the transposed version compare to the original? Does it sound like the same melody?
\qquad
\qquad

Draw a conclusion: Is a constant frequency offset a good way to transpose a melody?

Part 2

If you play middle C (or C4 on the diagram, with the numerical value indicating the octave number), how many half steps up do you need to go in order to play a perfect fifth interval?
\qquad
If you begin on A4, what note is a perfect fifth above?

Part 3

Use C4 as the fundamental. What is its frequency? \qquad Hz

What is the frequency of a major $3^{\text {rd }}$ above the fundamental? \qquad Hz

What is the frequency ratio of the interval? Express your result in the form " $a: 1$ ": \qquad
Repeat using C5 as the fundamental, and $\mathrm{A} \# 2$ as the fundamental:
Frequency of C5: \qquad Hz

A\#2: \qquad Hz

Frequency of major $3^{\text {rd }}$ above: \qquad Hz

A\#2: \qquad Hz

Frequency ratio: \qquad A\#2: \qquad
Draw a conclusion: Based on what you have experienced about musical intervals so far, can you develop at least part of an explanation for why the frequencies have been selected as they have?
\qquad
\qquad
\qquad
\qquad

Part 4

Complete the table below to show each interval as a ratio of the form " $a: 1$ ".

$$
\begin{aligned}
& \text { Major } 2^{\text {nd }}-9: 8 \quad=1.125: 1 \\
& \text { Major } 3^{\text {rd }}-5: 4= \\
& \text { Perfect } 4^{\text {th }}-4: 3=\ldots \quad: 1 \\
& \text { Perfect } 5^{\text {th }}-3: 2=\ldots \quad: 1 \\
& \text { Major } 6^{\text {th }}-5: 3 \quad=\quad \ldots \quad: 1 \\
& \text { Major } 7^{\text {th }}-15: 8= \\
& \text { Octave - 2:1 }=
\end{aligned}
$$

Listen to the following scale using your new VI, and using A4 $(440 \mathrm{~Hz})$ as the fundamental:

1	$9 / 8$	$5 / 4$	$4 / 3$	$3 / 2$	$5 / 3$	$15 / 8$	2

Comment on how well this sounds to you:

Transpose to G4 as the fundamental, and then F4 as the fundamental.
Comment on how well this scale transposes (the differences may be rather subtle):

Part 5

Derive a mathematical function to calculate the frequencies used by the equal-tempered scale, e.g., given a fundamental and semitone offset, calculate the frequency. You must show your derivation process, and not simply the end result!

