
Computing Forward Kinematics for Protein-like linear
systems using Denavit-Hartenberg Local Frames

Hernan Stamati, Amarda Shehu, Lydia Kavraki
Department of Computer Science

June 2007

Introduction

The purpose of this work is to derive a mathematical framework for manipulating protein structures in
a particular coordinate set that includes the angles between the protein’s bonds. The ability to predict
the spatial location of every atom in the protein upon changes on its bond angles is a crucial part of
any algorithmic procedure that selectively manipulates these angles. We start by introducing some
key concepts such as protein structure and conformation, and the application of geometric methods
to precisely define the relationship between the most useful coordinate sets that describe a protein’s
constituent elements. Then we focus on the derivation of an expression to convert between different
coordinate representations of a protein-like linear system.

Protein structure and conformation

Two important terms to understand and differentiate in computational molecular biology are the struc-
ture and conformation of a protein.

The structure of a protein is the set of atoms and bonds that join them; in other words, its inherent
connectivity. There are many possible structure models for a single protein, which usually depend on
the granularity or level of detail required by the application. For example, one may consider backbone-
only structures, or even simpler bead models where each aminoacid residue is modelled as a single
entity (in these last two cases, the protein becomes a linear sequence of connected beads). A protein
structure can also be divided into substructures, such as its backbone, sidechains, etc.

The conformation of a protein is a particular realization of its geometry, an actual arrangement in
3-dimensional space of its constituent atoms. At a more abstract level, one could also have other coor-
dinate sets -other than the actual (x,y,z) coordinates of atoms- describing a protein conformation, such
as the angles between consecutive bonds; in this case we could very well have an angular conforma-
tional space, with as many dimensions as the number of angles (consecutive bond pairs). Many other
parameter spaces are possible to specify a conformation, including the protein’s internal coordinates
discussed below.

1



Alternative parameter spaces, other than the intuitive Cartesian coordinates, are of interest in algorith-
mic computational biology since:

a) Physical and/or chemical constraints on the angular displacement of bonds and their length
may provide a significant decrease in the total number of independent degrees of freedom (DOFs)
of the protein, greatly reducing the complexity of geometric algorithms that operate on them.

b) A reduced number of DOFs not only reduces the dimensionality of the space to explore algo-
rithmically, it also improves the memory requirements of such algorithms (due to a more compact
representation).

c) The use of certain angular measurements (such as the angle between bonds) may provide a
better geometric picture that describes certain phenomena.

d) Many interesting problems in protein geometry can be readily defined in terms of internal
coordinates (discussed next).

One of the most useful representations for protein conformations considers the bond lengths, bond
angles, and bond torsions (otherwise known as dihedral angles) as the inherent degrees of freedom
(DOFs) in such conformations. These are known as internal coordinates, in contrast with the Cartesian
(x,y,z) coordinates of every atom in the protein. It is clear that a protein conformation can be com-
pletely specified by either its Cartesian coordinates or, alternatively, all of its internal coordinates (the
relative position and orientation of the protein may be considered arbitrary if it does not interact with
its environment).

We outlined above some of the most important reasons for working with internal coordinates. In later
sections, we will be interested in the problem of recomputing all Cartesian (x,y,z) atom positions when
changes in internal coordinates are introduced. Why would we be interested in this conversion? Most
real applications require such conversion because:

a) A protein’s POTENTIAL ENERGY (a quantity that indicates the feasibility of a particular
conformation) is generally defined in Cartesian coordinates.

b) Energy minimization algorithms rely heavily on the efficient computation of the potential
energy, and usually work in Cartesian space.

c) A small change in one of the angular DOFs may actually produce important deviations in the
Cartesian coordinates of atoms further along the protein.

d) Protein similarity measures, such as RMSD, are defined precisely for Cartesian coordinates.

e) Visualization programs always convert to cartesian coordinates before displaying a protein on
the screen.

Since we have established that both coordinate representations of a protein -cartesian and internal- are
equally useful, we need, at the very least, a procedure to obtain the former in terms of the latter.

2



Forward Kinematics

Kinematics is the description of motion, disregarding the ultimate physical interactions that produce
motion (for example, kinematics can be used to describe the trajectory of a falling object, without the
need to introduce the concept of gravity). For a protein, we are interested in knowing what conforma-
tions are ”allowable” while respecting the protein’s structure, without the need to resort to the covalent
binding forces to explain HOW the structure is kept together. This definition suggests that the study of
kinematics is a purely geometrical problem.

The term forward kinematics was introduced in the study of robotics to denote the computation of the
cartesian (x,y,z) coordinates of the robot’s end-effector (see figure), or any of its intermediate joints,
based on the robot’s internal coordinates (the joint angles and the link lengths). This procedure is of
special interest to us since it embodies the conversion mentioned in the previous section; we will derive
a mathematical expression to solve the forward kinematics problem for a simple linear protein model
in a later section. For now, you should convince yourself that a kinematic protein model is no different
from a general articulated mechanism or robot.

Inverse Kinematics

Imagine you are sitting at your table and you want to grasp a glass of water that is standing on the table.
You will, of course, automatically modify the angles at your shoulder, elbow and wrist to position your
hand around the glass. You will do so by taking into account the lengths of your arm and forearm, and
the effect of different angles at your joints, until your visual senses inform you that your hand is close
enough to the glass. This is an instance of an inverse kinematics problem: given a target position of
the end-effector, what are the (possibly many) values of the internal coordinates that satisfy it? One
particularly useful instance of the inverse kinematics problem for proteins is the loop closure problem:
given a flexible section of a protein (commonly referred to as a loop), are there any values for its internal
coordinates that ensure the loop endpoints connect two other protein domains? Problems such as this
usually require the definition and understanding of the protein’s forward kinematics first, for which we
develop a model next.

Performing Forward Kinematics on a protein model. The Denavit-
Hartenberg local frames

To perform forward kinematics on a protein model (as on any articulate mechanism or robot) requires
the INTEGRATION of a series of local constraints, starting from an initial condition (the absolute
location of the protein’s ”origin” or ”base”) as in any integration problem, either discrete or differential.
In our case, we have a discrete problem characterized by:

1. The specification of an anchor atom. This will typically be at an endpoint along the pro-
tein, and will serve as the boundary condition on which to propagate the following placement
constraints.

3



2. The description of an atom’s location, relative to a neighboring atom, in terms of the local
internal coordinates for the bond that joins them.

It should be clear that these two points define a recursive discrete integration problem on the internal
coordinates. The first point is trivially solvable (simply specify the cartesian coordinates of the anchor
atom). We proceed next to define the mathematical characterization of the second point.

In order to describe the location of an atom relative to its neighbors, we define a coordinate system, or
frame, attached to each atom, following the Denavit-Hartenberg (DH) method.

In the DH local frames method, there is a local coordinate frame attached to every atom Ai (see fig-
ure 1). The idea is to express the cartesian coordinates of atom Ai with respect to the coordinate frame
attached to atom Ai−1; this will serve as the definition of our recursion step in the integration proce-
dure outlined above, and obviously this conversion will involve bond parameters (i.e. angles and bond
length). Once we have such a coordinate-frame conversion, we can propagate it towards the anchor
atom A0, for which we know its exact position. We will adopt the following convention to define
local frames: frame Fi−1 = {Ai−1,xi−1,yi−1, zi−1}, where Ai−1 indicates the origin of the frame,
and x,y, z the three orthogonal axes. Similarly, the local frame Fi attached to atom Ai is defined as
Fi = {Ai,xi,yi, zi}. By convention axis zi lies along bond bi in the direction from Ai−1 to Ai; this
will simplify the math shortly. Axis xi−1 is chosen perpendicular to both zi−1 and zi (so that the bond
angle αi can be defined around it) and can be obtained by their cross-product as in xi = zi−1 × zi.
Finally, to complete a coordinate frame, yi is perpendicular to both xi and zi and can be obtained by
their cross-product yi = xi × zi (in that order) to define a right-handed coordinate system. Keep in
mind that this construction is only theoretical and does not actually need to be performed in a program;
its sole purpose is to obtain a mathematical formula for the conversion, as will be shown.

As depicted in Figure 1, the distance between atom Ai−1 and atom Ai, the bond length for bond bi,
is denoted by di. The angle between zi−1 and zi, the bond angle, is denoted by αi−1. Finally, the
dihedral angle on bond bi is denoted by θi. The formal definition of the dihedral angle θi is the angle
between the plane defined by atoms Ai−2, Ai−1 and Ai and the plane defined by atoms Ai−1, Ai and
Ai+1. Intuitively, θi defines the torsion of bonds bi−1 and bi+1 around bond bi.

For the purpose of deriving one coordinate frame conversion, assume P is an arbitrary point in space,
with coordinates (x, y, z) in frame Fi. We want to express these coordinates with respect to frame Fi−1

(to obtain our recursion formula). Then,

(x′, y′, z′, 1)t = Ri · (x, y, z, 1)t

where (x′, y′, z′) are the coordinates of P with respect to frame Fi−1, and Ri is the matrix that trans-
forms frame Fi−1 to frame Fi. During the following discussion, you may want to keep inspecting
figure 1 to validate the results (this may require several reads of this section).

To obtain the above frame conversion, one approach is to apply succesive transformations to Fi−1 un-
til it coincides with Fi (the reader should convice him/herself that this is equivalent to obtaining the
transformations that convert the coordinates of P from Fi to Fi−1; try creating some simple examples,
by choosing simple P ’s, and following the conversion of coordinates for this point). First we need
to remove the displacement between the origins of the frames, and then we need to align the frames,

4



Figure 1: Local frames Fi−1 and Fi attached to atoms Ai−1 and Ai, respectively.

so that their axes coincide. To remove the displacement between the origins of the frames, one needs
to translate frame Fi−1 along zi by the distance between the two frame origins, di. This translation
can be expressed by the following matrix in homogeneous coordinates (recall that in homogeneous
coordinates, translation, which is not a linear transformation, can be composed with other linear trans-
formations by simple matrix multiplication):

Tzi
(di) =











1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1











(1)

After removing the displacement, one needs to align the two frames to make their axes coincide. Axis
xi−1 does not coincide with axis xi due to the dihedral angle θi between them. Axis zi−1 does not
coincide with axis zi due to the bond angle αi−1 between them. We first align xi−1 with xi, and then
align zi−1 with zi.

To align xi−1 with xi, one needs to perform a rotation by the dihedral angle θi around axis zi. This
rotation is given by the following matrix:

Rzi
(θi) =











cos(θi) − sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 1 0
0 0 0 1











(2)

To align zi−1 with zi, one can perform the rotation by bond angle αi−1 around axis xi. This rotation is
given by the following matrix:

5



Rxi
(αi−1) =











1 0 0 0
0 cos(αi−1) − sin(αi−1) 0
0 sin(αi−1) cos(αi−1) 0
0 0 0 1











(3)

Note that the order of rotations is important. One cannot perform the rotation of frame Fi−1 by αi−1 first
and then the dihedral rotation, because a rotation by αi−1 changes the axis xi−1 to x

′

i−1. The value for
the dihedral θi is defined with respect to xi−1 and xi, not xi−1

′ and xi. To do the rotation by the dihedral
second, you would need to update the definition of θi with respect to x

′

i−1 since the axis xi−1 changed.
This is not convenient since for every transformation you would need to recompute the dihedral angle;
this is why a rotation by the bond angle first and the dihedral angle second is necessary.

Now we can finally transform Fi−1 to Fi by combining the above matrices as follows:

Ri = Rxi
(αi−1) · Rzi

(θi) · Tzi
(di)

where:

Ri =











cos(θi) − sin(θi) 0 0
sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di

sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) cos(αi−1)di

0 0 0 1











(4)

This formula provides all we need to integrate the atom coordinates from any starting point. As we said
before, a generic step in the integration is to get the cartesian coordinates (x, y, z) of any atom Ai with
respect to frame Fi−1 as follows:

(x, y, z, 1)t = Ri · (0, 0, 0, 1)t

Recall that the coordinates of atom Ai in its own frame Fi are (0, 0, 0) since we defined each local
frame as resting on the atom centers, so the origin of frame Fi is the atom Ai.

When using internal coordinates, the position of atom A0 (the anchor atom) is the only one known,
so every other atom’s cartesian coordinates can be obtained by chaining matrices Ri. Since the local
coordinates of atom Ai in its own frame are (0, 0, 0) (each local frame is attached to the center of an
atom), its coordinates (x, y, z) with respect to the frame attached to the anchor atom are computed as
follows:

(x, y, z, 1)t = R1 · R2 · . . . · Ri · (0, 0, 0, 1)t

Thus, for any value of i, we can retrieve Ai’s position in terms of A0 and all the bond parameters
between them (encoded in all the matrices). The only thing left to specify to globally place our protein
is its orientation. One can allow for rotations or translations of the local frame attached to the anchor
atom with respect to some global frame. Rotations of the anchor atom with respect to a global frame
cause a rigid rotation of the entire polypeptide chain. To do so, one can define the rotation frame as the
Euler matrix defined by the Euler angles of the local frame of the anchor atom to the global frame.

6



There are many conventions to define the Euler matrix. One of them, the X−Y −Z convention, defines
the Euler matrix as the product of three rotation matrices: rotation around z by angle α; rotation around
y by the angle β; rotation around x by the angle γ. In the X-Y-Z convention, the order is as follows:

E = Rz(α) · Ry(β) · Rx(γ)

This definition yields as the Euler matrix the one below:

E =











cos(α) cos(β) cos(α) sin(β) sin(γ) − sin(α) cos(γ) cos(α) sin(β) cos(γ) + sin(α) sin(γ) 0
sin(α) cos(β) sin(α) sin(β) sin(γ) + cos(α) cos(γ) sin(α) sin(β) cos(γ) − cos(α)sin(γ) 0
− sin(β) cos(β) sin(γ) cos(β) cos(γ) 0

0 0 0 1











(5)

Propagation of the rotation by the Euler matrix to the entire polypeptide chain can be done as follows:

(x, y, z, 1)t = E · R1 · R2 · . . . · Ri · (x0, y0, z0, 1)t

Remember that all the protein’s internal coordinates (bond angles, bond lengths and dihedral angles)
are encoded in the Ri matrices, so this formula provides the conversion between internal and cartesian
coordinates we set out to find.

For more information on the original application of Denavit-Hartenberg local frames to robotic mech-
anisms, see [1].

[1] J. Craig. Introduction to robotics: manipulation and control. Addison-Wesley, 2 edition, 1989.

7


