2.7-V TO 5.5-V LOW-POWER DUAL 12-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN

DIN

CS

SCLK

OUTA

SLAS225B - JUNE 1999 - REVISED JUNE 2000

 V_{DD}

ООТВ

1 agnd

REF

D, JG PACKAGE

(TOP VIEW)

8

7

6

features

- **Dual 12-Bit Voltage Output DAC**
- **Programmable Internal Reference**
- **Programmable Settling Time:**

1 μs in Fast Mode, 3.5 µs in Slow Mode

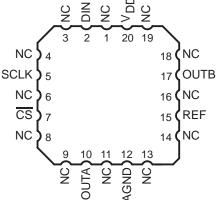
- Compatible With TMS320 and SPI™ Serial
- Differential Nonlinearity < 0.5 LSB Typ
- **Monotonic Over Temperature**

applications

- **Digital Servo Control Loops**
- **Digital Offset and Gain Adjustment**
- **Industrial Process Control**
- **Machine and Motion Control Devices**
- **Mass Storage Devices**

description

The TLV5638 is a dual 12-bit voltage output DAC with a flexible 3-wire serial interface. The serial interface allows glueless interface to TMS320 and


SPI™, QSPI™, and Microwire™ serial ports. It is programmed with a 16-bit serial string containing 4 control and 12 data bits.

The resistor string output voltage is buffered by a x2 gain rail-to-rail output buffer. The buffer features a Class AB output stage to improve stability and reduce settling time. The programmable settling time of the DAC allows the designer to optimize speed vs power dissipation. With its on-chip programmable precision voltage reference, the TLV5638 simplifies overall system design.

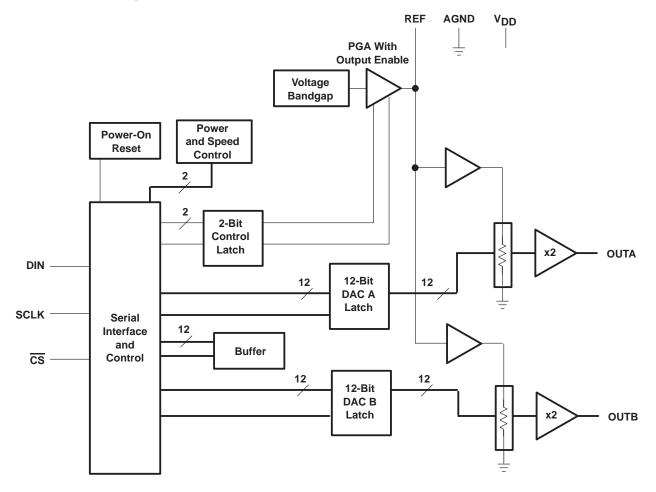
Because of its ability to source up to 1 mA, the reference can also be used as a system reference. Implemented with a CMOS process, the device is designed for single supply operation from 2.7 V to 5.5 V. It is available in an 8-pin SOIC package to reduce board space in standard commercial, industrial, and automotive temperature ranges. It is also available in JG and FK packages in the military temperature range.

FK PACKAGE (TOP VIEW) 18

3

AVAILABLE OPTIONS

		PACKAGE	
TA	SOIC (D)	CERAMIC DIP (JG)	20 PAD LCCC (FK)
0°C to 70°C	TLV5638CD	_	_
–40°C to 85°C	TLV5638ID	_	_
–40°C to 125°C	TLV5638QD TLV5638QDR	_	_
–55°C to 125°C	_	TLV5638MJG	TLV5638MFK



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corporation.

functional block diagram

Terminal Functions

TERM	INAL	I/O/P	DESCRIPTION
NAME	NO.	I/O/F	DESCRIPTION
AGND	5	Р	Ground
CS	3	I	Chip select. Digital input active low, used to enable/disable inputs
DIN	1	ı	Digital serial data input
OUT A	4	0	DAC A analog voltage output
OUT B	7	0	DAC B analog voltage output
REF	6	I/O	Analog reference voltage input/output
SCLK	2	ı	Digital serial clock input
V_{DD}	8	Р	Positive power supply

2.7-V TO 5.5-V LOW-POWER DUAL 12-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN

SLAS225B – JUNE 1999 – REVISED JUNE 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage (V _{DD} to AGND)	
Reference input voltage range	0.3 V to V _{DD} + 0.3 V
Digital input voltage range	
Operating free-air temperature range, T _A : TLV5638C	0°C to 70°C
TLV5638I	
TLV5638Q	–40°C to 125°C
TLV5638M	
Storage temperature range, T _{stg}	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C [‡]	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	635 mW	5.08 mW/°C	407 mW	330 mW	127 mW
FK	1375 mW	11.00 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.40 mW/°C	672 mW	546 mW	210 mW

[‡] This is the inverse of the traditional Junction-to-Ambient thermal Resistance (RO_{JA}). Thermal Resistances are not production tested and are for informational purposes only.

recommended operating conditions

		MIN	NOM	MAX	UNIT
Cumply voltage V	V _{DD} = 5 V	4.5	5	5.5	V
Supply voltage, V _{DD}	V _{DD} = 3 V	2.7	3	3.3	V
Power on reset, POR		*0.55		*2	V
High-level digital input voltage, VIH	V _{DD} = 2.7 V to 5.5 V	2			V
Low-level digital input voltage, V _{IL}	V _{DD} = 2.7 V to 5.5 V			0.8	V
Reference voltage, V _{ref} to REF terminal	V _{DD} = 5 V (see Note 1)	AGND	2.048	V _{DD} -1.5	V
Reference voltage, V _{ref} to REF terminal	V _{DD} = 3 V (see Note 1)	AGND	1.024	V _{DD} -1.5	V
Load resistance, R _L		2			kΩ
Load capacitance, CL				100	pF
Clock frequency, f _{CLK}				20	MHz
	TLV5638C	0		70	
Operating free-air temperature, T _Δ	TLV5638I	-40		85	°C
Operating nee-all temperature, 1A	TLV5638Q	-40		125	
	TLV5638M	-55		125	

^{*}This parameter is not tested for Q and M suffix devices.

NOTE 1: Due to the x2 output buffer, a reference input voltage ≥ (V_{DD}-0.4 V)/2 causes clipping of the transfer function. The output buffer of the internal reference must be disabled, if an external reference is used.

2.7-V TO 5.5-V LOW-POWER DUAL 12-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN

SLAS225B - JUNE 1999 - REVISED JUNE 2000

electrical characteristics over recommended operating conditions, V_{ref} = 2.048 V, V_{ref} = 1.024 V (unless otherwise noted)

power supply

	PARAMETER	TEST CONDITIONS			TLV5638C, I TLV5638M			UNIT	
			_	MIN	TYP	MAX			
			$V_{DD} = 5 V$,	Fast		4.3	7	mA	
		No load,	Int. ref.	Slow		2.2	3.6	IIIA	
			V _{DD} = 3 V, Fast Slow	$V_{DD} = 3 V$, Figure 1		3.8	6.3	mA	
	Power supply current All inputs or VDD,			Slow		1.8	3.0	ША	
IDD			V _{DD} = 5 V,	Fast		3.9	6.3	mA	
		DAC latch = 0x800	Ext. ref.	Ext. ref.	Slow		1.8	3.0	IIIA
			V _{DD} = 3 V,	Fast		3.5	5.7	mA	
			Ext. ref.	Slow		1.5	2.6	IIIA	
	Power-down supply current					0.01	10	μΑ	
PSRR	Power supply rejection ratio	Zero scale, See Note 2				-65		dB	
I JAK	Power supply rejection ratio	Full scale, See Note 3				-65	·	uB	

NOTES: 2. Power supply rejection ratio at zero scale is measured by varying VDD and is given by:

 $\mathsf{PSRR} = 20 \log \left[(\mathsf{E}_{\mathsf{ZS}}(\mathsf{V}_{\mathsf{DD}}\mathsf{max}) - \mathsf{E}_{\mathsf{ZS}}(\mathsf{V}_{\mathsf{DD}}\mathsf{min})) / \mathsf{V}_{\mathsf{DD}}\mathsf{max} \right]$

3. Power supply rejection ratio at full scale is measured by varying V_{DD} and is given by:

 $PSRR = 20 log [(E_G(V_{DD}max) - E_G(V_{DD}min))/V_{DD}max]$

static DAC specifications

	PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
	Resolution			12			bits
INL	Integral popling with and point adjusted	See Note 4	C and I suffixes		±1.7	±4	LSB
IINL	Integral nonlinearity, end point adjusted	See Note 4	Q and M suffixes		±1.7	±6	LSB
DNL	Differential nonlinearity	See Note 5			±0.4	±1	LSB
EZS	Zero-scale error (offset error at zero scale)	See Note 6				±24	mV
E _{ZS} TC	Zero-scale-error temperature coefficient	See Note 7			10		ppm/°C
EG	Gain error	See Note 8				±0.6	% full scale V
E _G T _C	Gain error temperature coefficient	See Note 9			10		ppm/°C

- NOTES: 4. The relative accuracy or integral nonlinearity (INL) sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors. Tested from code 32 to 4095.
 - 5. The differential nonlinearity (DNL) sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code.
 - 6. Zero-scale error is the deviation from zero voltage output when the digital input code is zero.

 - Zero-scale-error temperature coefficient is given by: E_{ZS} TC = [E_{ZS} (T_{max}) E_{ZS} (T_{min})]/V_{ref} × 10⁶/(T_{max} T_{min}).
 Gain error is the deviation from the ideal output (2V_{ref} 1 LSB) with an output load of 10 kΩ excluding the effects of the zero-error.
 Gain temperature coefficient is given by: E_G TC = [E_G(T_{max}) E_G (T_{min})]/V_{ref} × 10⁶/(T_{max} T_{min}).

electrical characteristics over recommended operating conditions, V_{ref} = 2.048 V, V_{ref} = 1.024 V (unless otherwise noted) (continued)

output specifications

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
VO	Output voltage	$R_L = 10 \text{ k}\Omega$	0		V _{DD} -0.4	V
	Output load regulation accuracy	$V_{O} = 4.096 \text{ V}, 2.048 \text{ V}, R_{L} = 2 \text{ k}\Omega$			±0.25	% full scale V

reference pin configured as output (REF)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{ref} (OUTL)	Low reference voltage		1.003	1.024	1.045	V
V _{ref} (OUTH)	High reference voltage	V _{DD} > 4.75 V	2.027	2.048	2.069	V
I _{ref(source)}	Output source current				1	mA
I _{ref(sink)}	Output sink current		-1			mA
	Load capacitance				100	pF
PSRR	Power supply rejection ratio			-65		dB

reference pin configured as input (REF)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
٧ _I	Input voltage			0		V _{DD-1.5}	V
RĮ	Input resistance			10			ΜΩ
Cl	Input capacitance			5			pF
	Deference input handwidth	DEE 0.2 V 1.4.024 V do	Fast		1.3		MHz
	Reference input bandwidth	EF = 0.2 V _{pp} + 1.024 V dc Slow			525		kHz
	Reference feedthrough	REF = 1 V _{pp} at 1 kHz + 1.024 V dc (see Note 10)			-80	·	dB

NOTE 10: Reference feedthrough is measured at the DAC output with an input code = 0x000.

2.7-V TO 5.5-V LOW-POWER DUAL 12-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN

SLAS225B – JUNE 1999 – REVISED JUNE 2000

electrical characteristics over recommended operating conditions (unless otherwise noted) (Continued)

digital inputs

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
lн	High-level digital input current	$V_I = V_{DD}$			1	μΑ
Ι _Ι L	Low-level digital input current	V _I = 0 V	-1			μΑ
Ci	Input capacitance			8		pF

analog output dynamic performance

	PARAMETER	TEST	CONDITIONS		MIN	TYP	MAX	UNIT			
	Output settling time, full scale	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $F_L = 100 \text{ pF}$		Fast		1	3				
ts(FS)	Output settiing time, full scale	See Note 11		Slow		3.5	7	μs			
+ (0.0)	Output settling time, code to code	$R_L = 10 \text{ k}\Omega$	C _L = 100 pF,	Fast		0.5	1.5				
ts(CC)	Output settling time, code to code	See Note 12	_	Slow		1	2	μs			
SR	Slew rate	R _L = 10 kΩ,	R _L = 10 kΩ,	$R_L = 10 \text{ k}\Omega$,	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF,	Fast		12		V/μs
SK	Siew rate	See Note 13		Slow		1.8		ν/μ5			
	Glitch energy	$\frac{DIN}{CS} = 0 \text{ to } 1,$ $\overline{CS} = V_{DD}$	FCLK = 100 kH	Hz,		5		nV-s			
SNR	Signal-to-noise ratio				69	74					
S/(N+D)	Signal-to-noise + distortion	f _S = 480 kSPS,	f _{out} = 1 kHz,		58	67		dB			
THD	Total harmonic distortion	$R_L = 10 \text{ k}\Omega$,	$C_L = 100 pF$			-69	– 57	ub			
	Spurious free dynamic range				57	72					

- NOTES: 11. Settling time is the time for the output signal to remain within ±0.5 LSB of the final measured value for a digital input code change of 0x020 to 0xFDF and 0xFDF to 0x020 respectively. Not tested, assured by design.
 - 12. Settling time is the time for the output signal to remain within ± 0.5 LSB of the final measured value for a digital input code change of one count. Not tested, assured by design.
 - 13. Slew rate determines the time it takes for a change of the DAC output from 10% to 90% full-scale voltage.

digital input timing requirements

		MIN	NOM	MAX	UNIT
t _{su(CS-CK)}	Setup time, CS low before first negative SCLK edge	10			ns
tsu(C16-CS)	Setup time, 16 th negative SCLK edge (when D0 is sampled) before CS rising edge	10			ns
^t wH	SCLK pulse width high	25			ns
t _{wL}	SCLK pulse width low	25			ns
t _{su(D)}	Setup time, data ready before SCLK falling edge	10			ns
th(D)	Hold time, data held valid after SCLK falling edge	5			ns

PARAMETER MEASUREMENT INFORMATION

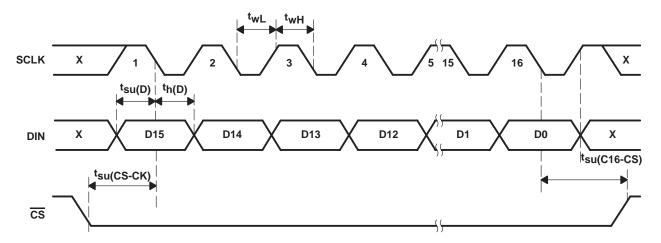
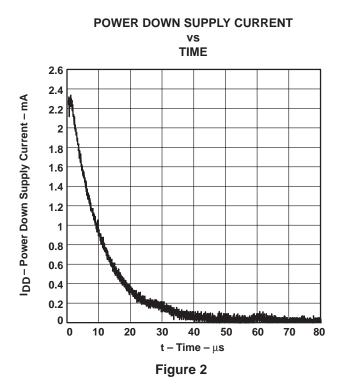



Figure 1. Timing Diagram

TYPICAL CHARACTERISTICS

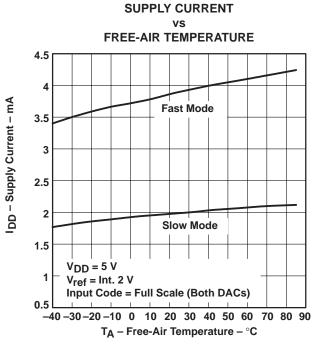
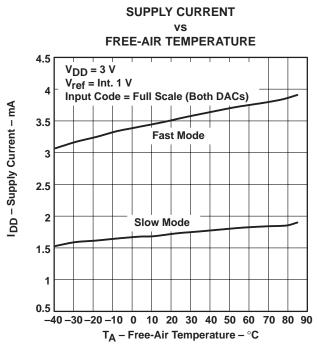



Figure 3

CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN

TYPICAL CHARACTERISTICS

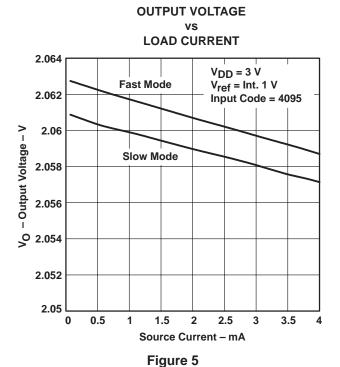
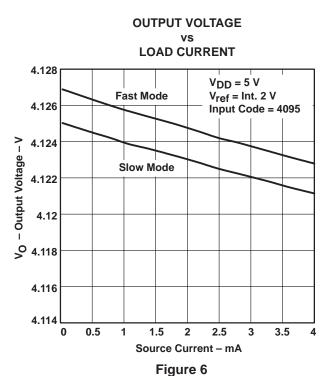



Figure 4

OUTPUT VOLTAGE vs LOAD CURRENT

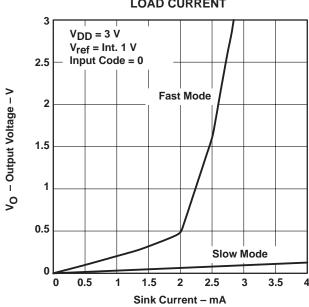
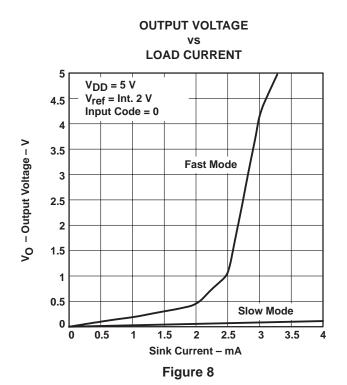



Figure 7

TYPICAL CHARACTERISTICS

TOTAL HARMONIC DISTORTION AND NOISE **FREQUENCY** THD+N - Total Harmonic Distortion and Noise - dB $V_{DD} = 5 V$ Vref = 1 V dc + 1 V p/p Sinewave -10**Output Full Scale** -20 -30 -40 -50 -60 **Slow Mode** -70 **Fast Mode** -80 -90 -100 100 1000 10000 100000 f - Frequency - Hz

Figure 9

TOTAL HARMONIC DISTORTION vs

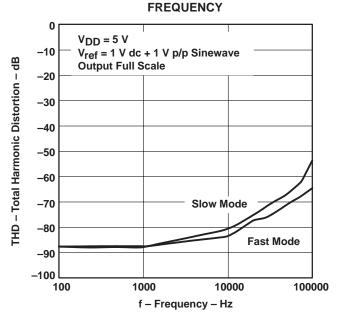
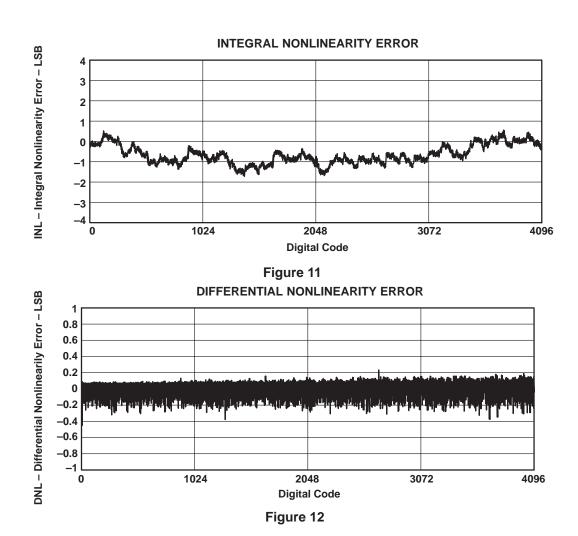



Figure 10

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

general function

The TLV5638 is a dual 12-bit, single supply DAC, based on a resistor string architecture. It consists of a serial interface, a speed and power-down control logic, a programmable internal reference, a resistor string, and a rail-to-rail output buffer.

The output voltage (full scale determined by reference) is given by:

2 REF
$$\frac{\text{CODE}}{0 \times 1000}$$
 [V]

Where REF is the reference voltage and CODE is the digital input value in the range 0x000 to 0xFFF. A power on reset initially puts the internal latches to a defined state (all bits zero).

APPLICATION INFORMATION

serial interface

A falling edge of \overline{CS} starts shifting the data bit-per-bit (starting with the MSB) to the internal register on the falling edges of SCLK. After 16 bits have been transferred or \overline{CS} rises, the content of the shift register is moved to the target latches (DAC A, DAC B, BUFFER, CONTROL), depending on the control bits within the data word.

Figure 13 shows examples of how to connect the TLV5638 to TMS320, SPI™, and Microwire™.

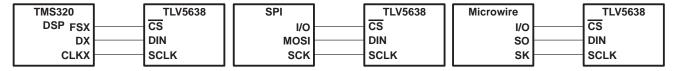


Figure 13. Three-Wire Interface

Notes on SPI™ and Microwire™: Before the controller starts the data transfer, the software has to generate a falling edge on the pin connected to FS. If the word width is 8 bits (SPI™ and Microwire™), two write operations must be performed to program the TLV5638. After the write operation(s), the holding registers or the control register are updated automatically on the 16th positive clock edge.

serial clock frequency and update rate

The maximum serial clock frequency is given by:

$$\rm f_{sclkmax} = \frac{1}{t_{whmin} + t_{wlmin}} = 20 \rm ~MHz$$

The maximum update rate is:

$$\rm f_{updatemax} = \frac{1}{16 \, \left(t_{whmin} + t_{wlmin}\right)} = 1.25 \, \, MHz$$

Note, that the maximum update rate is just a theoretical value for the serial interface, as the settling time of the TLV5638 has to be considered, too.

2.7-V TO 5.5-V LOW-POWER DUAL 12-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN

SLAS225B - JUNE 1999 - REVISED JUNE 2000

APPLICATION INFORMATION

data format

The 16-bit data word for the TLV5638 consists of two parts:

• Program bits (D15..D12)

New data (D11..D0)

)15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
R1	SPD	PWR	R0						12 Da	ta bits					

SPD: Speed control bit $1 \rightarrow$ fast mode $0 \rightarrow$ slow mode PWR: Power control bit $1 \rightarrow$ power down $0 \rightarrow$ normal operation

The following table lists the possible combination of the register select bits:

register select bits

R1	R0	REGISTER
0	0	Write data to DAC B and BUFFER
0	1	Write data to BUFFER
1	0	Write data to DAC A and update DAC B with BUFFER content
1	1	Write data to control register

The meaning of the 12 data bits depends on the register. If one of the DAC registers or the BUFFER is selected, then the 12 data bits determine the new DAC value:

data bits: DAC A, DAC B and BUFFER

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0						
					New DA	New DAC Value											

If control is selected, then D1, D0 of the 12 data bits are used to program the reference voltage:

data bits: CONTROL

D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	REF1	REF0

X: don't care

REF1 and REF0 determine the reference source and, if internal reference is selected, the reference voltage.

reference bits

REF1	REF0	REFERENCE
0	0	External
0	1	1.024 V
1	0	2.048 V
1	1	External

CAUTION:

If external reference voltage is applied to the REF pin, external reference MUST be selected.

APPLICATION INFORMATION

Examples of operation:

- Set DAC A output, select fast mode, select internal reference at 2.048 V:
 - 1. Set reference voltage to 2.048 V (CONTROL register):

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0

2. Write new DAC A value and update DAC A output:

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	0					Nev	DAC A	output va	alue				

The DAC A output is updated on the rising clock edge after D0 is sampled.

To output data consecutively using the same DAC configuration, it is not necessary to program the CONTROL register again.

- Set DAC B output, select fast mode, select external reference:
 - 3. Select external reference (CONTROL register):

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Γ	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0

4. Write new DAC B value to BUFFER and update DAC B output:

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0				New E	BUFFER	content a	nd DAC	B output	value			

The DAC A output is updated on the rising clock edge after D0 is sampled.

To output data consecutively using the same DAC configuration, it is not necessary to program the CONTROL register again.

- Set DAC A value, set DAC B value, update both simultaneously, select slow mode, select internal reference at 1.024 V:
 - 1. Set reference voltage to 1.024 V (CONTROL register):

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
ľ	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1

2. Write data for DAC B to BUFFER:

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1						New DAC	B value					

3. Write new DAC A value and update DAC A and B simultaneously:

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	New DAC A value											

APPLICATION INFORMATION

Examples of operation: (continued)

Both outputs are updated on the rising clock edge after D0 from the DAC A data word is sampled.

To output data consecutively using the same DAC configuration, it is not necessary to program the CONTROL register again.

Set power-down mode:

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Χ	Х	1	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

X = Don't care

linearity, offset, and gain error using single ended supplies

When an amplifier is operated from a single supply, the voltage offset can still be either positive or negative. With a positive offset, the output voltage changes on the first code change. With a negative offset, the output voltage may not change with the first code, depending on the magnitude of the offset voltage.

The output amplifier attempts to drive the output to a negative voltage. However, because the most negative supply rail is ground, the output cannot drive below ground and clamps the output at 0 V.

The output voltage then remains at zero until the input code value produces a sufficient positive output voltage to overcome the negative offset voltage, resulting in the transfer function shown in Figure 14.

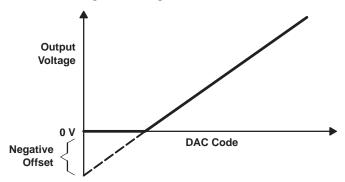


Figure 14. Effect of Negative Offset (Single Supply)

This offset error, not the linearity error, produces this breakpoint. The transfer function would have followed the dotted line if the output buffer could drive below the ground rail.

For a DAC, linearity is measured between zero-input code (all inputs 0) and full-scale code (all inputs 1) after offset and full scale are adjusted out or accounted for in some way. However, single supply operation does not allow for adjustment when the offset is negative due to the breakpoint in the transfer function. So the linearity is measured between full-scale code and the lowest code that produces a positive output voltage.

APPLICATION INFORMATION

definitions of specifications and terminology

integral nonlinearity (INL)

The relative accuracy or integral nonlinearity (INL), sometimes referred to as linearity error, is the maximum deviation of the output from the line between zero and full scale excluding the effects of zero code and full-scale errors.

differential nonlinearity (DNL)

The differential nonlinearity (DNL), sometimes referred to as differential error, is the difference between the measured and ideal 1 LSB amplitude change of any two adjacent codes. Monotonic means the output voltage changes in the same direction (or remains constant) as a change in the digital input code.

zero-scale error (E_{7S})

Zero-scale error is defined as the deviation of the output from 0 V at a digital input value of 0.

gain error (E_G)

Gain error is the error in slope of the DAC transfer function.

total harmonic distortion (THD)

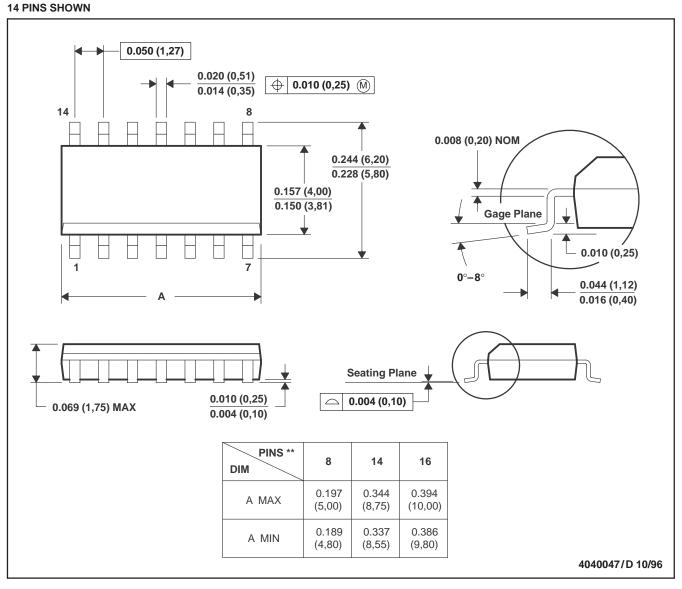
THD is the ratio of the rms value of the first six harmonic components to the value of the fundamental signal. The value for THD is expressed in decibels.

signal-to-noise ratio + distortion (S/N+D)

S/N+D is the ratio of the rms value of the output signal to the rms sum of all other spectral components below the Nyquist frequency, including harmonics but excluding dc. The value for S/N+D is expressed in decibels.

spurious free dynamic range (SFDR)

Spurious free dynamic range is the difference between the rms value of the output signal and the rms value of the largest spurious signal within a specified bandwidth. The value for SFDR is expressed in decibels.


2.7-V TO 5.5-V LOW-POWER DUAL 12-BIT DIGITAL-TO-ANALOG CONVERTER WITH INTERNAL REFERENCE AND POWER DOWN

SLAS225B - JUNE 1999 - REVISED JUNE 2000

MECHANICAL DATA

D (R-PDSO-G**)

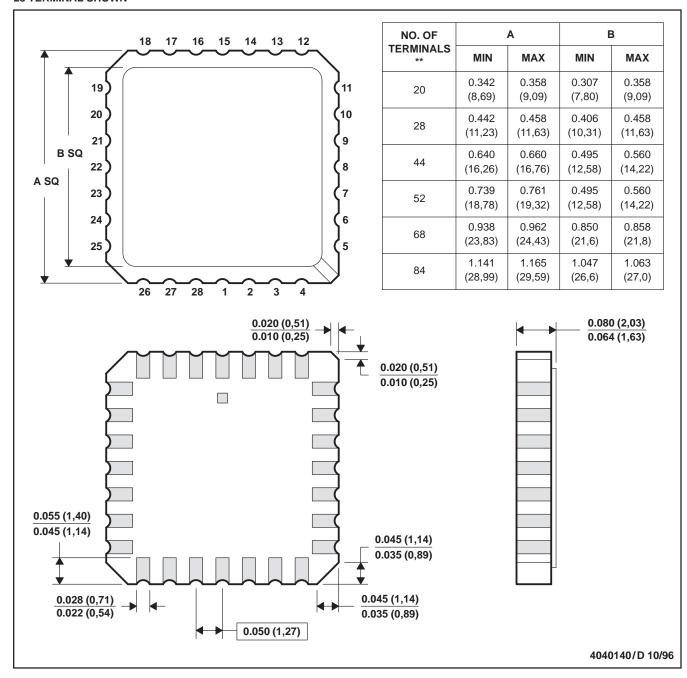
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

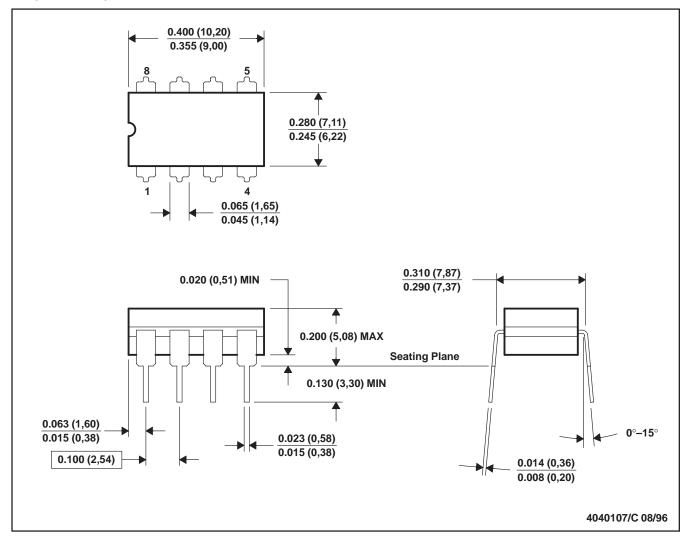


MECHANICAL INFORMATION

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a metal lid.
 - D. The terminals are gold plated.
 - E. Falls within JEDEC MS-004

MECHANICAL INFORMATION

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL-STD-1835 GDIP1-T8

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated