<< Chapter < Page Chapter >> Page >

Introduction to surface motions at the molecular level

As single molecule imaging methods such as scanning tunneling microscope (STM), atomic force microscope (AFM), and transmission electron microscope (TEM) developed in the past decades, scientists have gained powerful tools to explore molecular structures and behaviors in previously unknown areas. Among these imaging methods, STM is probably the most suitable one to observe detail at molecular level. STM can operate in a wide range of conditions, provides very high resolution, and able to manipulate molecular motions with the tip. An interesting early example came from IBM in 1990, in which the STM was used to position individual atoms for the first time, spelling out "I-B-M" in Xenon atoms. This work revealed that observation and control of single atoms and molecular motions on surfaces were possible.

The IBM work, and subsequent experiments, relied on the fact that STM tip always exerts a finite force toward an adsorbate atom that contains both van der Waals and electrostatic forces was utilized for manipulation purpose. By adjusting the position and the voltage of the tip, the interactions between the tip and the target molecule were changed. Therefore, applying/releasing force to a single atom and make it move was possible [link] .

Manipulation of STM tip toward a xenon atom. a) STM tip move onto a target atom then change the voltage and current of the tip to apply a stronger interaction. b) Move the atom to a desire position. c) After reaching the desire position, the tip released by switching back to the scanning voltage and current.

The actual positioning experiment was carried out in the following process. The nickel metal substrate was prepared by cycles of argon-ion sputtering, followed by annealing in a partial pressure of oxygen to remove surface carbon and other impurities. After the cleaning process, the sample was cooled to 4 K, and imaged with the STM to ensure the quality of surface. The nickel sample was then doped with xenon. An image of the doped sample was taken at constant-current scanning conditions. Each xenon atom appears as a located randomly 1.6 Å high bump on the surface ( [link] a). Under the imaging conditions (tip bias = 0.010 V with tunneling current 10 -9 A) the interaction of the xenon with the tip is too weak to cause the position of the xenon atom to be perturbed. To move an atom, the STM tip was placed on top of the atom performing the procedure depicted in [link] to move it to its target. Repeating this process again and again led the researcher to build of the structure they desired [link] b and c.

Manipulation of STM tip starting with a) randomly dosed xenon sample, b) under construction - move xenon atom to desire position, and c) accomplishment of the manipulation. Adapted from D. M. Eigler and E. K. Schweizer, Nature , 1990, 344 , 524.

All motions on surfaces at the single molecule level can be described as by the following (or combination of the following) modes:

  1. Sliding.
  2. Hopping.
  3. Rolling.
  4. Pivoting.

Questions & Answers

what is mutation
Janga Reply
what is a cell
Sifune Reply
how is urine form
Sifune
what is antagonism?
mahase Reply
classification of plants, gymnosperm features.
Linsy Reply
what is the features of gymnosperm
Linsy
how many types of solid did we have
Samuel Reply
what is an ionic bond
Samuel
What is Atoms
Daprince Reply
what is fallopian tube
Merolyn
what is bladder
Merolyn
what's bulbourethral gland
Eduek Reply
urine is formed in the nephron of the renal medulla in the kidney. It starts from filtration, then selective reabsorption and finally secretion
onuoha Reply
State the evolution relation and relevance between endoplasmic reticulum and cytoskeleton as it relates to cell.
Jeremiah
what is heart
Konadu Reply
how is urine formed in human
Konadu
how is urine formed in human
Rahma
what is the diference between a cavity and a canal
Pelagie Reply
what is the causative agent of malaria
Diamond
malaria is caused by an insect called mosquito.
Naomi
Malaria is cause by female anopheles mosquito
Isaac
Malaria is caused by plasmodium Female anopheles mosquitoe is d carrier
Olalekan
a canal is more needed in a root but a cavity is a bad effect
Commander
what are pathogens
Don Reply
In biology, a pathogen (Greek: πάθος pathos "suffering", "passion" and -γενής -genēs "producer of") in the oldest and broadest sense, is anything that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ. The term pathogen came into use in the 1880s.[1][2
Zainab
A virus
Commander
Definition of respiration
Muhsin Reply
respiration is the process in which we breath in oxygen and breath out carbon dioxide
Achor
how are lungs work
Commander
where does digestion begins
Achiri Reply
in the mouth
EZEKIEL
what are the functions of follicle stimulating harmones?
Rashima Reply
stimulates the follicle to release the mature ovum into the oviduct
Davonte
what are the functions of Endocrine and pituitary gland
Chinaza
endocrine secrete hormone and regulate body process
Achor
while pituitary gland is an example of endocrine system and it's found in the Brain
Achor
what's biology?
Egbodo Reply
Biology is the study of living organisms, divided into many specialized field that cover their morphology, physiology,anatomy, behaviour,origin and distribution.
Lisah
biology is the study of life.
Alfreda
Biology is the study of how living organisms live and survive in a specific environment
Sifune
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Nanomaterials and nanotechnology. OpenStax CNX. May 07, 2014 Download for free at http://legacy.cnx.org/content/col10700/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Nanomaterials and nanotechnology' conversation and receive update notifications?

Ask