<< Chapter < Page Chapter >> Page >
Diagram showing how a cofactor or coenzyme binds to the active site so that the shape of the active site is correct for binding the substrate. 1: apoenzyme becomes active by binding of the coenzyme or cofactor to enzyme. 2: Holoenzyme is formed when associated cofactor or coenzyme binds to the enzyme’s active site.
The binding of a coenzyme or cofactor to an apoenzyme is often required to form an active holoenzyme.
  • What role do enzymes play in a chemical reaction?

Enzyme inhibitors

Enzymes can be regulated in ways that either promote or reduce their activity. There are many different kinds of molecules that inhibit or promote enzyme function, and various mechanisms exist for doing so ( [link] ). A competitive inhibitor is a molecule similar enough to a substrate that it can compete with the substrate for binding to the active site by simply blocking the substrate from binding. For a competitive inhibitor to be effective, the inhibitor concentration needs to be approximately equal to the substrate concentration. Sulfa drugs provide a good example of competitive competition. They are used to treat bacterial infections because they bind to the active site of an enzyme within the bacterial folic acid synthesis pathway. When present in a sufficient dose, a sulfa drug prevents folic acid synthesis, and bacteria are unable to grow because they cannot synthesize DNA, RNA, and proteins. Humans are unaffected because we obtain folic acid from our diets.

On the other hand, a noncompetitive (allosteric) inhibitor binds to the enzyme at an allosteric site , a location other than the active site, and still manages to block substrate binding to the active site by inducing a conformational change that reduces the affinity of the enzyme for its substrate ( [link] ). Because only one inhibitor molecule is needed per enzyme for effective inhibition, the concentration of inhibitors needed for noncompetitive inhibition is typically much lower than the substrate concentration.

In addition to allosteric inhibitors, there are allosteric activator s that bind to locations on an enzyme away from the active site, inducing a conformational change that increases the affinity of the enzyme’s active site(s) for its substrate(s).

Allosteric control is an important mechanism of regulation of metabolic pathways involved in both catabolism and anabolism. In a most efficient and elegant way, cells have evolved also to use the products of their own metabolic reactions for feedback inhibition of enzyme activity. Feedback inhibition involves the use of a pathway product to regulate its own further production. The cell responds to the abundance of specific products by slowing production during anabolic or catabolic reactions ( [link] ).

Diagram of competitive inhibition shows an enzyme with an active site at one end and an allosteric site at the other end. In competitive inhibition the competitive inhibitor binds to the active site blocking the substrate from binding. In noncompetitive inhibition, the noncompetitive inhibitor binds to the allosteric site and changes the shape of the active site so that the substrate cannot fit.
Enzyme activity can be regulated by either competitive inhibitors, which bind to the active site, or noncompetitive inhibitors, which bind to an allosteric site.
Diagrams of three different control mechanisms. Diagram of allosteric inhibition. An enzyme with an active site at one end and an allosteric site at the other. When the inhibitor is bound, the shape of the active site is changes so the substrate cannot bind. When the inhibitor is not bound the shape of the active site does fit the active site. Allosteric activation shows an active site that does not fit the substrate until the activator binds. Once the activator is bound, the active site now does fit the substrate. Feedback inhibition shows a chain of enzymes; enzyme 1 binds a substrate that becomes intermediate substrate A. Intermediate substrate A binds to enzyme 2 and is converted into intermediate substrate B. Intermediate substrate B binds to enzyme 3 and is converted into the end product. The end product binds to enzyme 1 and prevents the substrate from binding to that enzyme.
(a) Binding of an allosteric inhibitor reduces enzyme activity, but binding of an allosteric activator increases enzyme activity. (b) Feedback inhibition, where the end product of the pathway serves as a noncompetitive inhibitor to an enzyme early in the pathway, is an important mechanism of allosteric regulation in cells.
  • Explain the difference between a competitive inhibitor and a noncompetitive inhibitor.

Key concepts and summary

  • Metabolism includes chemical reactions that break down complex molecules ( catabolism ) and those that build complex molecules ( anabolism ).
  • Organisms may be classified according to their source of carbon. Autotrophs convert inorganic carbon dioxide into organic carbon; heterotrophs use fixed organic carbon compounds.
  • Organisms may also be classified according to their energy source. Phototrophs obtain their energy from light. Chemotrophs get their energy from chemical compounds. Organotrophs use organic molecules, and lithotrophs use inorganic chemicals.
  • Cellular electron carriers accept high-energy electrons from foods and later serve as electron donors in subsequent redox reactions . FAD/FADH 2 , NAD + /NADH , and NADP + /NADPH are important electron carriers.
  • Adenosine triphosphate (ATP) serves as the energy currency of the cell, safely storing chemical energy in its two high-energy phosphate bonds for later use to drive processes requiring energy.
  • Enzymes are biological catalysts that increase the rate of chemical reactions inside cells by lowering the activation energy required for the reaction to proceed.
  • In nature, exergonic reactions do not require energy beyond activation energy to proceed, and they release energy. They may proceed without enzymes, but at a slow rate. Conversely, endergonic reactions require energy beyond activation energy to occur. In cells, endergonic reactions are coupled to exergonic reactions, making the combination energetically favorable.
  • Substrates bind to the enzyme’s active site . This process typically alters the structures of both the active site and the substrate, favoring transition-state formation; this is known as induced fit .
  • Cofactors are inorganic ions that stabilize enzyme conformation and function. Coenzymes are organic molecules required for proper enzyme function and are often derived from vitamins. An enzyme lacking a cofactor or coenzyme is an apoenzyme; an enzyme with a bound cofactor or coenzyme is a holoenzyme .
  • Competitive inhibitors regulate enzymes by binding to an enzyme’s active site, preventing substrate binding. Noncompetitive (allosteric) inhibitors bind to allosteric sites , inducing a conformational change in the enzyme that prevents it from functioning. Feedback inhibition occurs when the product of a metabolic pathway noncompetitively binds to an enzyme early on in the pathway, ultimately preventing the synthesis of the product.

Fill in the blank

Processes in which cellular energy is used to make complex molecules from simpler ones are described as ________.

anabolic

Got questions? Get instant answers now!

The loss of an electron from a molecule is called ________.

oxidation

Got questions? Get instant answers now!

The part of an enzyme to which a substrate binds is called the ________.

active site

Got questions? Get instant answers now!

True/false

Competitive inhibitors bind to allosteric sites.

False

Got questions? Get instant answers now!

Short answer

In cells, can an oxidation reaction happen in the absence of a reduction reaction? Explain.

Got questions? Get instant answers now!

What is the function of molecules like NAD + /NADH and FAD/FADH 2 in cells?

Got questions? Get instant answers now!

Questions & Answers

prostaglandin and fever
Maha Reply
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice MCQ 5

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask