<< Chapter < Page Chapter >> Page >
a) A micrograph of a spherical cell approximately 4 µm in diameter. B) A micrograph of wavy ribbon shaped cells approximately 10 µm in length. C) a micrograph of a bell shaped cell approximately 50µm in diameter with a tail approximately 200 µm in length. D) An oval shaped cell approximately 100 µm in length. A ring shaped cell approximately 4 µm in diameter; the ring shaped cell is inside a red blood cell.
Eukaryotic cells come in a variety of cell shapes. (a) Spheroid Chromulina alga. (b) Fusiform shaped Trypanosoma . (c) Bell-shaped Vorticella . (d) Ovoid Paramecium . (e) Ring-shaped Plasmodium ovale . (credit a: modification of work by NOAA; credit b, e: modification of work by Centers for Disease Control and Prevention)
  • Identify two differences between eukaryotic and prokaryotic cells.

Nucleus

Unlike prokaryotic cells, in which DNA is loosely contained in the nucleoid region, eukaryotic cells possess a nucleus , which is surrounded by a complex nuclear membrane that houses the DNA genome ( [link] ). By containing the cell’s DNA, the nucleus ultimately controls all activities of the cell and also serves an essential role in reproduction and heredity. Eukaryotic cells typically have their DNA organized into multiple linear chromosomes. The DNA within the nucleus is highly organized and condensed to fit inside the nucleus, which is accomplished by wrapping the DNA around proteins called histones.

A micrograph of a portion of an oval cell. In the center is a darker spherical structure.
Eukaryotic cells have a well-defined nucleus. The nucleus of this mammalian lung cell is the large, dark, oval-shaped structure in the lower half of the image.

Although most eukaryotic cells have only one nucleus, exceptions exist. For example, protozoans of the genus Paramecium typically have two complete nuclei: a small nucleus that is used for reproduction (micronucleus) and a large nucleus that directs cellular metabolism (macronucleus). Additionally, some fungi transiently form cells with two nuclei, called heterokaryotic cells, during sexual reproduction. Cells whose nuclei divide, but whose cytoplasm does not, are called coenocytes .

The nucleus is bound by a complex nuclear membrane , often called the nuclear envelope , that consists of two distinct lipid bilayers that are contiguous with each other ( [link] ). Despite these connections between the inner and outer membranes, each membrane contains unique lipids and proteins on its inner and outer surfaces. The nuclear envelope contains nuclear pores, which are large, rosette-shaped protein complexes that control the movement of materials into and out of the nucleus. The overall shape of the nucleus is determined by the nuclear lamina , a meshwork of intermediate filaments found just inside the nuclear envelope membranes. Outside the nucleus, additional intermediate filaments form a looser mesh and serve to anchor the nucleus in position within the cell.

A micrograph showing an oval cell with a large oval nucleus. The nucleus is red with a bright green outline labeled nuclear lamina. Green lines criss-cross the rest of the cell outside the nucleus.
In this fluorescent microscope image, all the intermediate filaments have been stained with a bright green fluorescent stain. The nuclear lamina is the intense bright green ring around the faint red nuclei.

Nucleolus

The nucleolus is a dense region within the nucleus where ribosomal RNA (rRNA) biosynthesis occurs. In addition, the nucleolus is also the site where assembly of ribosomes begins. Preribosomal complexes are assembled from rRNA and proteins in the nucleolus; they are then transported out to the cytoplasm, where ribosome assembly is completed ( [link] ).

a) A diagram showing the nucleus. A sphere in the center of the nucleus is labeled nucleolus. Lines within the nucleus are labeled chromatin. The fluid of the nucleus is labeled nucleoplasm. The outer region just inside the nuclear envelope is labeled nuclear lamina. The outside of the nucleus is labeled nuclear envelop and pores in the envelope are labeled nuclear pores.  The nuclear envelope is continuous with and becomes the endoplasmic reticulum; a webbing of membranes outside the nucleus. B) A micrograph showing these same structures. The nucleolus is a dark region inside the nucleus which is composed of many lighter lines. The nuclear envelop forms the outside of the nucleus and a pore is seen as a light region in the envelope. Outside the envelope are many lines labeled rough endoplasmic reticulum. A smaller set of lines is labeled mitochondrion overlaying part of the RER.
(a) The nucleolus is the dark, dense area within the nucleus. It is the site of rRNA synthesis and preribosomal assembly. (b) Electron micrograph showing the nucleolus.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask