<< Chapter < Page Chapter >> Page >

The green nonsulfur bacteria are similar to green sulfur bacteria but they use substrates other than sulfides for oxidation. Chloroflexus is an example of a green nonsulfur bacterium. It often has an orange color when it grows in the dark, but it becomes green when it grows in sunlight. It stores bacteriochlorophyll in chlorosomes, similar to Chlorobium , and performs anoxygenic photosynthesis , using organic sulfites (low concentrations) or molecular hydrogen as electron donors, so it can survive in the dark if oxygen is available. Chloroflexus does not have flagella but can glide, like Cytophaga . It grows at a wide range of temperatures, from 35 °C to 70 °C, thus can be thermophilic.

Another large, diverse group of phototrophic bacteria compose the phylum Cyanobacteria ; they get their blue-green color from the chlorophyll contained in their cells ( [link] ). Species of this group perform oxygenic photosynthesis, producing megatons of gaseous oxygen. Scientists hypothesize that cyanobacteria played a critical role in the change of our planet’s anoxic atmosphere 1–2 billion years ago to the oxygen-rich environment we have today. A. De los Rios et al. “Ultrastructural and Genetic Characteristics of Endolithic Cyanobacterial Biofilms Colonizing Antarctic Granite Rocks.” FEMS Microbiology Ecology 59 no. 2 (2007):386–395.

a) A micrograph of green spherical cells. B) A photo of a green lake
(a) Microcystis aeruginosa is a type of cyanobacteria commonly found in freshwater environments. (b) In warm temperatures, M. aeruginosa and other cyanobacteria can multiply rapidly and produce neurotoxins, resulting in blooms that are harmful to fish and other aquatic animals. (credit a: modification of work by Dr. Barry H. Rosen/U.S. Geological Survey; credit b: modification of work by NOAA)

Cyanobacteria have other remarkable properties. Amazingly adaptable, they thrive in many habitats, including marine and freshwater environments, soil, and even rocks. They can live at a wide range of temperatures, even in the extreme temperatures of the Antarctic. They can live as unicellular organisms or in colonies, and they can be filamentous, forming sheaths or biofilms. Many of them fix nitrogen, converting molecular nitrogen into nitrites and nitrates that other bacteria, plants, and animals can use. The reactions of nitrogen fixation occur in specialized cells called heterocysts .

Photosynthesis in Cyanobacteria is oxygenic, using the same type of chlorophyll a found in plants and algae as the primary photosynthetic pigment. Cyanobacteria also use phycocyanin and cyanophycin , two secondary photosynthetic pigments that give them their characteristic blue color. They are located in special organelles called phycobilisomes and in folds of the cellular membrane called thylakoids , which are remarkably similar to the photosynthetic apparatus of plants. Scientists hypothesize that plants originated from endosymbiosis of ancestral eukaryotic cells and ancestral photosynthetic bacteria. T. Cavalier-Smith. “Membrane Heredity and Early Chloroplast Evolution.” Trends in Plant Science 5 no. 4 (2000):174–182. Cyanobacteria are also an interesting object of research in biochemistry, S. Zhang, D.A. Bryant. “The Tricarboxylic Acid Cycle in Cyanobacteria.” Science 334 no. 6062 (2011):1551–1553. with studies investigating their potential as biosorbents A. Cain et al. “Cyanobacteria as a Biosorbent for Mercuric Ion.” Bioresource Technology 99 no. 14 (2008):6578–6586. and products of human nutrition. C.S. Ku et al. “Edible Blue-Green Algae Reduce the Production of Pro-Inflammatory Cytokines by Inhibiting NF-κB Pathway in Macrophages and Splenocytes.” Biochimica et Biophysica Acta 1830 no. 4 (2013):2981–2988.

Unfortunately, cyanobacteria can sometimes have a negative impact on human health. Genera such as Microcystis can form harmful cyanobacterial blooms , forming dense mats on bodies of water and producing large quantities of toxins that can harm wildlife and humans. These toxins have been implicated in tumors of the liver and diseases of the nervous system in animals and humans. I. Stewart et al. Cyanobacterial Poisoning in Livestock, Wild Mammals and Birds – an Overview. Advances in Experimental Medicine and Biology 619 (2008):613–637.

[link] summarizes the characteristics of important phototrophic bacteria.

Phototrophic Bacteria
Phylum Class Example Genus or Species Common Name Oxygenic or Anoxygenic Sulfur Deposition
Cyanobacteria Cyanophyceae Microcystis aeruginosa Blue-green bacteria Oxygenic None
Chlorobi Chlorobia Chlorobium Green sulfur bacteria Anoxygenic Outside the cell
Chloroflexi (Division) Chloroflexi Chloroflexus Green nonsulfur bacteria Anoxygenic None
Proteobacteria Alphaproteobacteria Rhodospirillum Purple nonsulfur bacteria Anoxygenic None
Betaproteobacteria Rhodocyclus Purple nonsulfur bacteria Anoxygenic None
Gammaproteobacteria Chromatium Purple sulfur bacteria Anoxygenic Inside the cell
  • What characteristic makes phototrophic bacteria different from other prokaryotes?

Key concepts and summary

  • Gram-negative nonproteobacteria include the taxa spirochetes ; the Cytophaga , Fusobacterium , Bacteroides group; Planctomycetes; and many representatives of phototrophic bacteria.
  • Spirochetes are motile, spiral bacteria with a long, narrow body; they are difficult or impossible to culture.
  • Several genera of spirochetes contain human pathogens that cause such diseases as syphilis and Lyme disease.
  • Cytophaga , Fusobacterium , and Bacteroides are classified together as a phylum called the CFB group . They are rod-shaped anaerobic organoheterotrophs and avid fermenters. Cytophaga are aquatic bacteria with the gliding motility. Fusobacteria inhabit the human mouth and may cause severe infectious diseases. Bacteroides are present in vast numbers in the human gut, most of them being mutualistic but some are pathogenic.
  • Planctomycetes are aquatic bacteria that reproduce by budding; they may form large colonies, and develop a holdfast.
  • Phototrophic bacteria are not a taxon but, rather, a group categorized by their ability to use the energy of sunlight. They include Proteobacteria and nonproteobacteria, as well as sulfur and nonsulfur bacteria colored purple or green.
  • Sulfur bacteria perform anoxygenic photosynthesis, using sulfur compounds as donors of electrons, whereas nonsulfur bacteria use organic compounds (succinate, malate) as donors of electrons.
  • Some phototrophic bacteria are able to fix nitrogen, providing the usable forms of nitrogen to other organisms.
  • Cyanobacteria are oxygen-producing bacteria thought to have played a critical role in the forming of the earth’s atmosphere.

Fill in the blank

The bacterium that causes syphilis is called ________.

Treponema pallidum pallidum

Got questions? Get instant answers now!

Bacteria in the genus Rhodospirillum that use hydrogen for oxidation and fix nitrogen are ________ bacteria.

purple nonsulfur

Got questions? Get instant answers now!

Short answer

Explain the term CFB group and name the genera that this group includes.

Got questions? Get instant answers now!

Name and briefly describe the bacterium that causes Lyme disease.

Got questions? Get instant answers now!

Characterize the phylum Cyanobacteria.

Got questions? Get instant answers now!

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice MCQ 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask