<< Chapter < Page Chapter >> Page >

[link] shows the obscuration bar in front of the forward-scatter detector that prevents laser light from hitting the detector. As a cell passes through the laser bar, the forward-scatter detector detects light scattered around the obscuration bar. The scattered light is transformed into a voltage pulse, and the cytometer counts a cell. The fluorescence from a labeled cell is detected by the side-scatter detectors. The light passes through various dichroic mirrors such that the light emitted from the fluorophore is received by the correct detector.

A cell sample goes through a nozzle and is separated into a cell and a flow sheath in a tube on the other side. A laser hits this tube at a 90 degree angle and breaks off in two directions, one goes straight through and is labeled obscuration bar, the other at a 45 degree angle. There are 3 dichroic mirrors which break off and 3 filters. All 5 of the paths converge and are sent to an analysis workstation.
In flow cytometry, a mixture of fluorescently labeled and unlabeled cells passes through a narrow capillary. A laser excites the fluorogen, and the fluorescence intensity of each cell is measured by a detector. (credit: modification of work by “Kierano”/Wikimedia Commons)

Data are collected from both the forward- and side-scatter detectors. One way these data can be presented is in the form of a histogram. The forward scatter is placed on the y -axis (to represent the number of cells), and the side scatter is placed on the x -axis (to represent the fluoresence of each cell). The scaling for the x -axis is logarithmic, so fluorescence intensity increases by a factor of 10 with each unit increase along the axis. [link] depicts an example in which a culture of cells is combined with an antibody attached to a fluorophore to detect CD8 cells and then analyzed by flow cytometry. The histogram has two peaks. The peak on the left has lower fluorescence readings, representing the subset of the cell population (approximately 30 cells) that does not fluoresce; hence, they are not bound by antibody and therefore do not express CD8. The peak on the right has higher fluorescence readings, representing the subset of the cell population (approximately 100 cells) that show fluorescence; hence, they are bound by the antibody and therefore do express CD8.

A graph with fluorescence on the X axis and Cell count on the Y axis. The first peak reaches approximately 30 and is labeled do not express CD8. The second peak reaches about 100 and is labeld do express CD8.
Flow cytometry data are often compiled as a histogram. In the histogram, the area under each peak is proportional to the number of cells in each population. The x -axis is the relative fluorescence expressed by the cells (on a log scale), and the y -axis represents the number of cells at a particular level of fluorescence.
  • What is the purpose of the laser in a flow cytometer?
  • In the output from a flow cytometer, the area under the histogram is equivalent to what?

Resolution

After notifying all 1300 patients, the hospital begins scheduling HIV screening. Appointments were scheduled a minimum of 3 weeks after the patient’s last hospital visit to minimize the risk of false negatives. Because some false positives were anticipated, the public health physician set up a counseling protocol for any patient whose indirect ELISA came back positive.

Of the 1300 patients, eight tested positive using the ELISA. Five of these tests were invalidated by negative western blot tests, but one western blot came back positive, confirming that the patient had indeed contracted HIV. The two remaining western blots came back indeterminate. These individuals had to submit to a third test, a PCR, to confirm the presence or absence of HIV sequences. Luckily, both patients tested negative.

As for the lone patient confirmed to have HIV, the tests cannot prove or disprove any connection to the syringes compromised by the former hospital employee. Even so, the hospital’s insurance will fully cover the patient’s treatment, which began immediately.

Although we now have drugs that are typically effective at controlling the progression of HIV and AIDS, there is still no cure. If left untreated, or if the drug regimen fails, the patient will experience a gradual decline in the number of CD4 helper T cells, resulting in severe impairment of all adaptive immune functions. Even moderate declines of helper T cell numbers can result in immunodeficiency, leaving the patient susceptible to opportunistic infections. To monitor the status of the patient’s helper T cells, the hospital will use flow cytometry. This sensitive test allows physicians to precisely determine the number of helper T cells so they can adjust treatment if the number falls below 500 cells/µL.

Jump to the previous Clinical Focus box.

Cell sorting using immunofluorescence

The flow cytometer and immunofluorescence can also be modified to sort cells from a single sample into purified subpopulations of cells for research purposes. This modification of the flow cytometer is called a fluorescence-activated cell sorter (FACS) . In a FACS, fluorescence by a cell induces the device to put a charge on a droplet of the transporting fluid containing that cell. The charge is specific to the wavelength of the fluorescent light, which allows for differential sorting by those different charges. The sorting is accomplished by an electrostatic deflector that moves the charged droplet containing the cell into one collecting vessel or another. The process results in highly purified subpopulations of cells.

One limitation of a FACS is that it only works on isolated cells. Thus, the method would work in sorting white blood cells, since they exist as isolated cells. But for cells in a tissue, flow cytometry can only be applied if we can excise the tissue and separate it into single cells (using proteases to cleave cell-cell adhesion molecules) without disrupting cell integrity. This method may be used on tumors, but more often, immunohistochemistry and immunocytochemistry are used to study cells in tissues.

  • In fluorescence activated cell sorting, what characteristic of the target cells allows them to be separated?

[link] compares the mechanisms of the fluorescent antibody techniques discussed in this section.

Fluorescent Antibody Techniques
Type of Assay Mechanism Examples
Direct fluorescent antibody (DFA) Uses fluorogen-antibody conjugates to label bacteria from patient samples Visualizing Legionella pneumophila from a throat swab
Indirect fluorescent antibody (IFA) Detects disease-specific antibodies in patent serum Diagnosing syphilis; detecting antinuclear antibodies (ANA) for lupus and other autoimmune diseases
Flow cytometry Labels cell membranes with fluorogen-antibody conjugate markers excited by a laser; machine counts the cell and records the relative fluorescence Counting the number of fluorescently labeled CD4 or CD8 cells in a sample
Fluorescence activated cell sorter (FACS) Form of flow cytometry that both counts cells and physically separates them into pools of high and low fluorescence cells Sorting cancer cells

Key concepts and summary

  • Immunofluorescence assays use antibody-fluorogen conjugates to illuminate antigens for easy, rapid detection.
  • Direct immunofluorescence can be used to detect the presence of bacteria in clinical samples such as sputum.
  • Indirect immunofluorescence detects the presence of antigen-specific antibodies in patient sera. The fluorescent antibody binds to the antigen-specific antibody rather than the antigen.
  • The use of indirect immunofluorescence assays to detect antinuclear antibodies is an important tool in the diagnosis of several autoimmune diseases.
  • Flow cytometry uses fluorescent mAbs against cell-membrane proteins to quantify specific subsets of cells in complex mixtures.
  • Fluorescence-activated cell sorters are an extension of flow cytometry in which fluorescence intensity is used to physically separate cells into high and low fluorescence populations.

Fill in the blank

In flow cytometry, cell subsets are labeled using a fluorescent antibody to a membrane protein. The fluorogen is activated by a(n) ________ as the cells pass by the detectors.

laser

Got questions? Get instant answers now!

Fluorescence in a flow cytometer is measured by a detector set at an angle to the light source. There is also an in-line detector that can detect cell clumps or ________.

fragments

Got questions? Get instant answers now!

Questions & Answers

prostaglandin and fever
Maha Reply
Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask