<< Chapter < Page Chapter >> Page >

In Sanger’s day, four reactions were set up for each DNA molecule being sequenced, each reaction containing only one of the four possible ddNTPs. Each ddNTP was labeled with a radioactive phosphorus molecule. The products of the four reactions were then run in separate lanes side by side on long, narrow PAGE gels, and the bands of varying lengths were detected by autoradiography. Today, this process has been simplified with the use of ddNTPs, each labeled with a different colored fluorescent dye or fluorochrome ( [link] ), in one sequencing reaction containing all four possible ddNTPs for each DNA molecule being sequenced ( [link] ). These fluorochromes are detected by fluorescence spectroscopy. Determining the fluorescence color of each band as it passes by the detector produces the nucleotide sequence of the template strand.

A drawing of dNTPs and ddNTPs. Deoxynucleotide (dNTP) is a nucleotide with an OH at carbon #3. This is drawn as a pentagon with an O at the top. Moving counterclockwise – the next point has the word “base”, the next only has H’s, the next has an OH, and the last has 3 phosphates. Dideeoxynucleotide (ddNTP) is a nucleotide with an H at carbon #3. This is drawn as a pentagon with an O at the top. Moving counterclockwise – the next point has the word “base”, the next only has H’s, the next aso has only H’s, and the last has 3 phosphates.
A dideoxynucleotide is similar in structure to a deoxynucleotide, but is missing the 3ʹ hydroxyl group (indicated by the shaded box). When a dideoxynucleotide is incorporated into a DNA strand, DNA synthesis stops.
A diagram showing the Sanger method. A strand of DNA has the sequence GATTCAGC. Dye-labeled dideoxynucleotides are used to generate DNA fragments of different lengths. The shortest fragment ends with a red star to indicate that the ddTTP is what ended the chain. The next shortest fragment has a green star to indicate that a ddATP ended the chain. The next has a black star to indicate that a ddGTP ended the chain. The longest has a blue star to indicate that a ddCTP ended the chain. Not all of the fragments are shown in the diagram. To the right is a computer printout that does show all the fragments that would be seen in a sample. The computer printout shows a colored peak to indicate which fragment moved through the gel at that position. The first (shortest) position shows a black peak indicating a G, next is a green peak indicating an A, next is a red peak indicating a T, next are 3 green peaks indicating A’s, etc.
Frederick Sanger’s dideoxy chain termination method is illustrated, using ddNTPs tagged with fluorochromes. Using ddNTPs, a mixture of DNA fragments of every possible size, varying in length by only one nucleotide, can be generated. The DNA is separated on the basis of size and each band can be detected with a fluorescence detector.
A diagram summarizing the Sanger method. 1 – The following are added to the PCR reaction tube: DNA template, primers, DNA polymerase, dNTPs, and fluorescently labeled ddNTPs. 2 – At each base in the DNA template, either a dNTP is added and elongation continues or a ddNTP is added and elongation stops. This process results in fragments of all sizes, each with a different fluorescently labeled end nucleotide. 3 – The fragments are run through a capillary gel and detected by a laser. A computer identifies each band as it passes by a laser.
This diagram summarizes the Sanger sequencing method using fluorochrome-labeled ddNTPs and capillary gel electrophoresis.

Since 2005, automated sequencing techniques used by laboratories fall under the umbrella of next generation sequencing , which is a group of automated techniques used for rapid DNA sequencing. These methods have revolutionized the field of molecular genetics because the low-cost sequencers can generate sequences of hundreds of thousands or millions of short fragments (25 to 600 base pairs) just in one day. Although several variants of next generation sequencing technologies are made by different companies (for example, 454 Life Sciences’ pyrosequencing and Illumina’s Solexa technology), they all allow millions of bases to be sequenced quickly, making the sequencing of entire genomes relatively easy, inexpensive, and commonplace. In 454 sequencing (pyrosequencing) , for example, a DNA sample is fragmented into 400–600-bp single-strand fragments, modified with the addition of DNA adapters to both ends of each fragment. Each DNA fragment is then immobilized on a bead and amplified by PCR, using primers designed to anneal to the adapters, creating a bead containing many copies of that DNA fragment. Each bead is then put into a separate well containing sequencing enzymes. To the well, each of the four nucleotides is added one after the other; when each one is incorporated, pyrophosphate is released as a byproduct of polymerization, emitting a small flash of light that is recorded by a detector. This provides the order of nucleotides incorporated as a new strand of DNA is made and is an example of synthesis sequencing. Next generation sequencers use sophisticated software to get through the cumbersome process of putting all the fragments in order. Overall, these technologies continue to advance rapidly, decreasing the cost of sequencing and increasing the availability of sequence data from a wide variety of organisms quickly.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Microbiology. OpenStax CNX. Nov 01, 2016 Download for free at http://cnx.org/content/col12087/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microbiology' conversation and receive update notifications?

Ask