# 14.6 Buffers  (Page 3/9)

 Page 3 / 9
$\left(1.0\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-4}\right)\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}\left(1.8\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-6}\right)\phantom{\rule{0.2em}{0ex}}=9.8\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-5}\phantom{\rule{0.2em}{0ex}}M$

The concentration of NaOH is:

$\frac{9.8\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-5}\phantom{\rule{0.2em}{0ex}}M\phantom{\rule{0.2em}{0ex}}\text{NaOH}}{0.101\phantom{\rule{0.2em}{0ex}}\text{L}}\phantom{\rule{0.2em}{0ex}}=9.7\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-4}M$

The pOH of this solution is:

$\text{pOH}=\text{−log}\left[{\text{OH}}^{\text{−}}\right]\phantom{\rule{0.2em}{0ex}}=\text{−log}\left(9.7\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-4}\right)\phantom{\rule{0.2em}{0ex}}=3.01$

The pH is:

$\text{pH}=14.00\phantom{\rule{0.2em}{0ex}}-\phantom{\rule{0.2em}{0ex}}\text{pOH}=10.99$

The pH changes from 4.74 to 10.99 in this unbuffered solution. This compares to the change of 4.74 to 4.75 that occurred when the same amount of NaOH was added to the buffered solution described in part (b).

Show that adding 1.0 mL of 0.10 M HCl changes the pH of 100 mL of a 1.8 $×$ 10 −5 M HCl solution from 4.74 to 3.00.

Initial pH of 1.8 $×$ 10 −5 M HCl; pH = −log[H 3 O + ] = −log[1.8 $×$ 10 −5 ] = 4.74
Moles of H 3 O + in 100 mL 1.8 $×$ 10 −5 M HCl; 1.8 $×$ 10 −5 moles/L $×$ 0.100 L = 1.8 $×$ 10 −6
Moles of H 3 O + added by addition of 1.0 mL of 0.10 M HCl: 0.10 moles/L $×$ 0.0010 L = 1.0 $×$ 10 −4 moles; final pH after addition of 1.0 mL of 0.10 M HCl:

$\text{pH}=\text{−log}\left[{\text{H}}_{3}{\text{O}}^{\text{+}}\right]=\text{−log}\left(\phantom{\rule{0.2em}{0ex}}\frac{\text{total moles}\phantom{\rule{0.2em}{0ex}}{\text{H}}_{3}{\text{O}}^{\text{+}}}{\text{total volume}}\right)\phantom{\rule{0.2em}{0ex}}\phantom{\rule{0.2em}{0ex}}=\text{−log}\left(\phantom{\rule{0.2em}{0ex}}\frac{1.0\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-4}\phantom{\rule{0.2em}{0ex}}\text{mol}+1.8\phantom{\rule{0.2em}{0ex}}×\phantom{\rule{0.2em}{0ex}}{10}^{-6}\phantom{\rule{0.2em}{0ex}}\text{mol}}{101\phantom{\rule{0.2em}{0ex}}\text{mL}\left(\phantom{\rule{0.2em}{0ex}}\frac{1\phantom{\rule{0.2em}{0ex}}\text{L}}{1000\phantom{\rule{0.2em}{0ex}}\text{mL}}\right)\phantom{\rule{0.2em}{0ex}}}\right)\phantom{\rule{0.2em}{0ex}}\phantom{\rule{0.2em}{0ex}}=3.00$

If we add an acid or a base to a buffer that is a mixture of a weak base and its salt, the calculations of the changes in pH are analogous to those for a buffer mixture of a weak acid and its salt.

## Buffer capacity

Buffer solutions do not have an unlimited capacity to keep the pH relatively constant ( [link] ). If we add so much base to a buffer that the weak acid is exhausted, no more buffering action toward the base is possible. On the other hand, if we add an excess of acid, the weak base would be exhausted, and no more buffering action toward any additional acid would be possible. In fact, we do not even need to exhaust all of the acid or base in a buffer to overwhelm it; its buffering action will diminish rapidly as a given component nears depletion.

The buffer capacity    is the amount of acid or base that can be added to a given volume of a buffer solution before the pH changes significantly, usually by one unit. Buffer capacity depends on the amounts of the weak acid and its conjugate base that are in a buffer mixture. For example, 1 L of a solution that is 1.0 M in acetic acid and 1.0 M in sodium acetate has a greater buffer capacity than 1 L of a solution that is 0.10 M in acetic acid and 0.10 M in sodium acetate even though both solutions have the same pH. The first solution has more buffer capacity because it contains more acetic acid and acetate ion.

## Selection of suitable buffer mixtures

There are two useful rules of thumb for selecting buffer mixtures:

1. A good buffer mixture should have about equal concentrations of both of its components. A buffer solution has generally lost its usefulness when one component of the buffer pair is less than about 10% of the other. [link] shows an acetic acid-acetate ion buffer as base is added. The initial pH is 4.74. A change of 1 pH unit occurs when the acetic acid concentration is reduced to 11% of the acetate ion concentration.
2. Weak acids and their salts are better as buffers for pHs less than 7; weak bases and their salts are better as buffers for pHs greater than 7.

what is the oxidation number of this compound fecl2,fecl3,fe2o3
bonds formed in an endothermic reaction are weaker than the reactants but y r these compound stable at higher temperatures
what is a disproportionation reaction
name the force that exist in cao
what is chemistry
so from dis concept rust x an atom
compare the dual nature of light
light behaves as particle and as well as waves in some phenomena....
zille
list 10 gases and their IUPAC name
what are the likely questions for jamb
in group atomic number?
why is contact process important?
what structure?
of the above question.
Nakyanzi
Draw the Lewis structure of the following : Nitrate anion Nitrogen dioxide
a first order reaction is 40% complete after 8 minutes how long will it be before it is 95% complete
plea what are the best topics in chemistry to know
atomic theory . nuclear chemistry . chemical reaction. chemical equilibrium . organic chemistry. molecules concept 1 n 2. kinetic theory of gases.
Inusah
wat topics are the most important in biology
Josephine
cells 1 n 2, ecology. insects. genetics. plants. nutrition.
Inusah
organic chemistry
Dolly