<< Chapter < Page Chapter >> Page >
This module explores the Law of Large Numbers, the phenomenon where an experiment performed many times will yield cumulative results closer and closer to the theoretical mean over time.

The expected value is often referred to as the "long-term"average or mean . This means that over the long term of doing an experiment over and over, you would expect this average.

The mean of a random variable X is μ . If we do an experiment many times (for instance, flip a fair coin, as Karl Pearson did, 24,000 times and let X = the number of heads) and record the value of X each time, the average is likely to get closer and closer to μ as we keep repeating the experiment. This is known as the Law of Large Numbers .

To find the expected value or long term average, μ , simply multiply each value of the random variable by its probability and add the products.

A step-by-step example

A men's soccer team plays soccer 0, 1, or 2 days a week. The probability that they play 0 days is 0.2, the probability that they play 1 day is 0.5, and the probability that they play 2 days is 0.3. Find the long-term average, μ , or expected value of the days per week the men's soccer team plays soccer.

To do the problem, first let the random variable X = the number of days the men's soccer team plays soccer per week. X takes on the values 0, 1, 2. Construct a PDF table, adding a column xP(x) . In this column, you will multiply each x value by its probability.

This table is called an expected value table. The table helps you calculate the expected value or long-term average.
Expected value table
x P(x) x P(x)
0 0.2 (0)(0.2) = 0
1 0.5 (1)(0.5) = 0.5
2 0.3 (2)(0.3) = 0.6

Add the last column to find the long term average or expected value: (0)(0.2)+(1)(0.5)+(2)(0.3)= 0 + 0.5 + 0.6 = 1.1 .

The expected value is 1.1. The men's soccer team would, on the average, expect to play soccer 1.1 days per week. The number 1.1 is the long term average or expected value if the men's soccer team plays soccer week after week after week. We say μ=1.1

Find the expected value for the example about the number of times a newborn baby's crying wakes its mother after midnight. The expected value is the expected number of times a newborn wakes its mother after midnight.

You expect a newborn to wake its mother after midnight 2.1 times, on the average.
x P(X) x P(X)
0 P(x=0) = 2 50 (0) ( 2 50 ) = 0
1 P(x=1) = 11 50 (1) ( 11 50 ) = 11 50
2 P(x=2) = 23 50 (2) ( 23 50 ) = 46 50
3 P(x=3) = 9 50 (3) ( 9 50 ) = 27 50
4 P(x=4) = 4 50 (4) ( 4 50 ) = 16 50
5 P(x=5) = 1 50 (5) ( 1 50 ) = 5 50

Add the last column to find the expected value. μ = Expected Value = 105 50 = 2.1

Go back and calculate the expected value for the number of days Nancy attends classes a week. Construct the third column to do so.

2.74 days a week.

Suppose you play a game of chance in which five numbers are chosen from 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. A computer randomly selects five numbers from 0 to 9 with replacement. You pay $2 to play and could profit $100,000 if you match all 5 numbers in order (you get your $2 back plus $100,000). Over the long term, what is your expected profit of playing the game?

To do this problem, set up an expected value table for the amount of money you can profit.

Let X = the amount of money you profit. The values of x are not 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Since you are interested in your profit (or loss), the values of x are 100,000 dollars and -2 dollars.

To win, you must get all 5 numbers correct, in order. The probability of choosing one correct number is 1 10 because there are 10 numbers. You may choose a number more than once. The probability of choosing all 5 numbers correctly and in order is:

1 10 * 1 10 * 1 10 * 1 10 * 1 10 * = 1 * 10 -5 = 0.00001

Therefore, the probability of winning is 0.00001 and the probability of losing is

1 - 0.00001 = 0.99999

The expected value table is as follows.

Αdd the last column. -1.99998 + 1 = -0.99998
x P(x) x P(x)
Loss -2 0.99999 (-2)(0.99999)=-1.99998
Profit 100,000 0.00001 (100000)(0.00001)=1

Since -0.99998 is about -1 , you would, on the average, expect to lose approximately one dollar for each game you play. However, each time you play, you either lose $2 or profit $100,000. The $1 is theaverage or expected LOSS per game after playing this game over and over.

Suppose you play a game with a biased coin. You play each game by tossing the coin once. P(heads) = 2 3 and P(tails) = 1 3 . If you toss a head, you pay $6. If you toss a tail, you win $10. If you play this game many times, will you come out ahead?

Define a random variable X .

X = amount of profit

Complete the following expected value table.

x ____ ____
WIN 10 1 3 ____
LOSE ____ ____ -12 3
x P(x) x P(x)
WIN 10 1 3 10 3
LOSE -6 2 3 -12 3

What is the expected value, μ ? Do you come out ahead?

Add the last column of the table. The expected value μ = -2 3 . You lose, on average, about 67 cents each time you play the game so you do not come out ahead.

Like data, probability distributions have standard deviations. To calculate the standard deviation ( σ ) of a probability distribution, find each deviation from its expected value, square it, multiply it by its probability, add the products, and take the square root . To understand how to do the calculation, look at the table for thenumber of days per week a men's soccer team plays soccer. To find the standard deviation, add the entries in the column labeled ( x μ ) 2 · P ( x ) and take the square root.

x P(x) x P(x) (x -μ) 2 P(x)
0 0.2 (0)(0.2) = 0 ( 0 - 1.1 ) 2 ( .2 ) = 0.242
1 0.5 (1)(0.5) = 0.5 ( 1 - 1.1 ) 2 ( .5 ) = 0.005
2 0.3 (2)(0.3) = 0.6 ( 2 - 1.1 ) 2 ( .3 ) = 0.243

Add the last column in the table. 0.242 + 0.005 + 0.243 = 0.490 . The standard deviation is the square root of 0.49 . σ = 0.49 = 0.7

Generally for probability distributions, we use a calculator or a computer to calculate μ and σ to reduce roundoff error. For some probability distributions, there are short-cut formulas that calculate μ and σ .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Elementary statistics. OpenStax CNX. Dec 30, 2013 Download for free at http://cnx.org/content/col10966/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Elementary statistics' conversation and receive update notifications?

Ask