<< Chapter < Page Chapter >> Page >

Environmental debate

This photo shows a protest against the Keystone XL Pipeline for tar sands at the White House in 2011.
Across the country, countless people have protested, even risking arrest, against the Keystone XL Pipeline. (Credit: modification of image by “NoKXL”/Flickr Creative Commons)

Keystone xl

You might have heard about Keystone XL in the news. It is a pipeline system designed to bring oil from Canada to the refineries near the Gulf of Mexico, as well as to boost crude oil production in the United States. While a private company, TransCanada, will own the pipeline, U.S. government approval is required because of its size and location. The pipeline is being built in four phases, with the first two currently in operation, bringing oil from Alberta, Canada, east across Canada, south through the United States into Nebraska and Oklahoma, and northeast again to Illinois. The third and fourth phases of the project, known as Keystone XL, would create a pipeline southeast from Alberta straight to Nebraska, and then from Oklahoma to the Gulf of Mexico.

Sounds like a great idea, right? A pipeline that would move much needed crude oil to the Gulf refineries would increase oil production for manufacturing needs, reduce price pressure at the gas pump, and increase overall economic growth. Supporters argue that the pipeline is one of the safest pipelines built yet, and would reduce America’s dependence on politically vulnerable Middle Eastern oil imports.

Not so fast, say its critics. The Keystone XL would be constructed over an enormous aquifer (one of the largest in the world) in the Midwest, and through an environmentally fragile area in Nebraska, causing great concern among environmentalists about possible destruction to the natural surroundings. They argue that leaks could taint valuable water sources and construction of the pipeline could disrupt and even harm indigenous species. Environmentalist groups have fought government approval of the proposed construction of the pipeline, and as of press time the pipeline projects remain stalled.

Of course, environmental concerns matter when discussing issues related to economic growth. But how much should they factor in? In the case of the pipeline, how do we know how much damage it would cause when we do not know how to put a value on the environment? Would the benefits of the pipeline outweigh the opportunity cost? The issue of how to balance economic progress with unintended effects on our planet is the subject of this chapter.

Introduction to environmental protection and negative externalities

In this chapter, you will learn about:

  • The Economics of Pollution
  • Command-and-Control Regulation
  • Market-Oriented Environmental Tools
  • The Benefits and Costs of U.S. Environmental Laws
  • International Environmental Issues
  • The Tradeoff between Economic Output and Environmental Protection

In 1969, the Cuyahoga River in Ohio was so polluted that it spontaneously burst into flame. Air pollution was so bad at that time that Chattanooga, Tennessee was a city where, as an article from Sports Illustrated put it: “the death rate from tuberculosis was double that of the rest of Tennessee and triple that of the rest of the United States, a city in which the filth in the air was so bad it melted nylon stockings off women’s legs, in which executives kept supplies of clean white shirts in their offices so they could change when a shirt became too gray to be presentable, in which headlights were turned on at high noon because the sun was eclipsed by the gunk in the sky.”

The problem of pollution arises for every economy in the world, whether high-income or low-income, and whether market-oriented or command-oriented. Every country needs to strike some balance between production and environmental quality. This chapter begins by discussing how firms may fail to take certain social costs, like pollution, into their planning if they do not need to pay these costs. Traditionally, policies for environmental protection have focused on governmental limits on how much of each pollutant could be emitted. While this approach has had some success, economists have suggested a range of more flexible, market-oriented policies that reduce pollution at a lower cost. We will consider both approaches, but first let’s see how economists frame and analyze these issues.

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Principles of economics. OpenStax CNX. Sep 19, 2014 Download for free at http://legacy.cnx.org/content/col11613/1.11
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Principles of economics' conversation and receive update notifications?

Ask